455 research outputs found

    Optimal Wavelength Allocation in Hybrid Quantum-Classical Networks

    Get PDF
    An efficient algorithm for optimal allocation of wavelengths in a hybrid dense-wavelength-division-multiplexing system, carrying both quantum and classical data, is proposed. The transmission of quantum bits alongside intense classical signals on the same fiber faces major challenges arising from the background noise generated by classical channels. Raman scattering, in particular, is shown to have detrimental effects on the performance of quantum key distribution systems. Here, by using an optimal wavelength allocation technique, we minimize the Raman induced background noise on quantum channels, hence maximize the achievable secret key generation rate for quantum channels. It turns out the conventional solution that the optimal arrangement would involve splitting the spectrum into only two bands, one for quantum and one for classical channels, is only a suboptimal one. We show that, in the optimal arrangement, we might need several quantum and classical bands interspersed among each other

    Orthogonal Frequency Division Multiplexed Quantum Key Distribution in The Presence of Raman Noise

    Get PDF
    In this paper, we investigate the performance of orthogonal frequency division multiplexed quantum key distribution (OFDM-QKD) in an integrated quantum-classical wavelength-division-multiplexing system. The presence of an intense classical signal alongside the quantum one generates Raman background noise. Noise reduction techniques should, then, be carried out at the receiver to suppress this crosstalk noise. In this work, we show that OFDM-QKD enables efficient filtering, in time and frequency domains, making it an attractive solution for the high-rate links at the core of quantum-classical networks

    Crosstalk Reduction in Hybrid Quantum-Classical Networks

    Get PDF
    In this paper, we propose and investigate several crosstalk reduction techniques for hybrid quantum-classical dense-wavelength-division-multiplexing systems. The transmission of intense classical signals alongside weak quantum ones on the same fiber introduces some crosstalk noise, mainly due to Raman scattering and nonideal channel isolation, that may severely affect the performance of quantum key distribution systems. We examine the conventional methods of suppressing this crosstalk noise, and enhance them by proposing an appropriate channel allocation method that reduces the background crosstalk effectively. Another approach proposed in this paper is the usage of orthogonal frequency division multiplexing, which offers efficient spectral and temporal filtering features

    Fiber-optic CDMA networks incorporating multiple optical amplifiers

    Get PDF
    We employ photon-counting techniques to analyze the performance of an all-optical fiber-optic code division multiple access (CDMA) network incorporating multiple optical amplifiers. Our analysis is based on obtaining characteristic functions indicating the photon-count of the output of a block of CDMA code pulse to its input count. The bit error rate (BER) results are obtained using two methods, namely, saddle-point and Gaussian approximations. From our BER analysis, we develop some insight into the optimum distribution of optical amplifiers and their corresponding gain setting paramete

    Orthogonal Frequency-Division Multiplexed Quantum Key Distribution

    Get PDF
    We propose orthogonal frequency-division multiplexing (OFDM), as a spectrally efficient multiplexing technique, for quantum key distribution at the core of trusted-node quantum networks. Two main schemes are proposed and analyzed in detail, considering system imperfections, specifically, time misalignment issues. It turns out that while multiple service providers can share the network infrastructure using the proposed multiplexing techniques, no gain in the total secret key generation rate is obtained if one uses conventional passive all-optical OFDM decoders. To achieve a linear increase in the key rate with the number of channels, an alternative active setup for OFDM decoding is proposed, which employs an optical switch in addition to conventional passive circuits. We show that by using our proposed decoder, the bandwidth utilization is considerably improved as compared to conventional wavelength-division multiplexing techniques

    Diazoxide choline extended-release tablet in people with Prader-Willi syndrome: results from long-term open-label study

    Get PDF
    OBJECTIVE: This study assessed the effect of 1-year administration of diazoxide choline extended-release tablet (DCCR) on hyperphagia and other complications of Prader-Willi syndrome (PWS). METHODS: The authors studied 125 participants with PWS, age ≥ 4 years, who were enrolled in the DESTINY PWS Phase 3 study and who received DCCR for up to 52 weeks in DESTINY PWS and/or its open-label extension. The primary efficacy endpoint was Hyperphagia Questionnaire for Clinical Trials (HQ-CT) score. Other endpoints included behavioral assessments, body composition, hormonal measures, and safety. RESULTS: DCCR administration resulted in significant improvements in HQ-CT (mean [SE] -9.9 [0.77], p  22). Improvements were seen in aggression, anxiety, and compulsivity (all p < 0.0001). There were reductions in leptin, insulin, and insulin resistance, as well as a significant increase in adiponectin (all p < 0.004). Lean body mass was increased (p < 0.0001). Disease severity was reduced as assessed by clinician and caregiver (both p < 0.0001). Common treatment-emergent adverse events included hypertrichosis, peripheral edema, and hyperglycemia. Adverse events infrequently resulted in discontinuation (7.2%). CONCLUSIONS: DCCR administration to people with PWS was well-tolerated and associated with broad-ranging improvements in the syndrome. Sustained administration of DCCR has the potential to reduce disease severity and the burden of care for families

    An integration of enhanced social force and crowd control models for high-density crowd simulation

    Get PDF
    Social force model is one of the well-known approaches that can successfully simulate pedestrians’ movements realistically. However, it is not suitable to simulate high-density crowd movement realistically due to the model having only three basic crowd characteristics which are goal, attraction, and repulsion. Therefore, it does not satisfy the high-density crowd condition which is complex yet unique, due to its capacity, density, and various demographic backgrounds of the agents. Thus, this research proposes a model that improves the social force model by introducing four new characteristics which are gender, walking speed, intention outlook, and grouping to make simulations more realistic. Besides, the high-density crowd introduces irregular behaviours in the crowd flow, which is stopping motion within the crowd. To handle these scenarios, another model has been proposed that controls each agent with two different states: walking and stopping. Furthermore, the stopping behaviour was categorized into a slow stop and sudden stop. Both of these proposed models were integrated to form a high-density crowd simulation framework. The framework has been validated by using the comparison method and fundamental diagram method. Based on the simulation of 45,000 agents, it shows that the proposed framework has a more accurate average walking speed (0.36 m/s) compared to the conventional social force model (0.61 m/s). Both of these results are compared to the real-world data which is 0.3267 m/s. The findings of this research will contribute to the simulation activities of pedestrians in a highly dense population
    • …
    corecore