16 research outputs found

    Bats in the anthropogenic matrix: Challenges and opportunities for the conservation of chiroptera and their ecosystem services in agricultural landscapes

    Get PDF
    Intensification in land-use and farming practices has had largely negative effects on bats, leading to population declines and concomitant losses of ecosystem services. Current trends in land-use change suggest that agricultural areas will further expand, while production systems may either experience further intensification (particularly in developing nations) or become more environmentally friendly (especially in Europe). In this chapter, we review the existing literature on how agricultural management affects the bat assemblages and the behavior of individual bat species, as well as the literature on provision of ecosystem services by bats (pest insect suppression and pollination) in agricultural systems. Bats show highly variable responses to habitat conversion, with no significant change in species richness or measures of activity or abundance. In contrast, intensification within agricultural systems (i.e., increased agrochemical inputs, reduction of natural structuring elements such as hedges, woods, and marshes) had more consistently negative effects on abundance and species richness. Agroforestry systems appear to mitigate negative consequences of habitat conversion and intensification, often having higher abundances and activity levels than natural areas. Across biomes, bats play key roles in limiting populations of arthropods by consuming various agricultural pests. In tropical areas, bats are key pollinators of several commercial fruit species. However, these substantial benefits may go unrecognized by farmers, who sometimes associate bats with ecosystem disservices such as crop raiding. Given the importance of bats for global food production, future agricultural management should focus on “wildlife-friendly” farming practices that allow more bats to exploit and persist in the anthropogenic matrix so as to enhance provision of ecosystem services. Pressing research topics include (1) a better understanding of how local-level versus landscape-level management practices interact to structure bat assemblages, (2) the effects of new pesticide classes and GM crops on bat populations, and (3) how increased documentation and valuation of the ecosystem services provided by bats could improve attitudes of producers toward their conservation

    Deforestation Impacts on Bat Functional Diversity in Tropical Landscapes

    Get PDF
    <div><p>Functional diversity is the variability in the functional roles carried out by species within ecosystems. Changes in the environment can affect this component of biodiversity and can, in turn, affect different processes, including some ecosystem services. This study aimed to determine the effect of forest loss on species richness, abundance and functional diversity of Neotropical bats. To this end, we identified six landscapes with increasing loss of forest cover in the Huasteca region of the state of Hidalgo, Mexico. We captured bats in each landscape using mist nets, and calculated functional diversity indices (functional richness and functional evenness) along with species richness and abundance. We analyzed these measures in terms of percent forest cover. We captured 906 bats (Phyllostomidae and Mormoopidae), including 10 genera and 12 species. Species richness, abundance and functional richness per night are positively related with forest cover. Generalized linear models show that species richness, abundance and functional richness per night are significantly related with forest cover, while seasonality had an effect on abundance and functional richness. Neither forest cover nor season had a significant effect on functional evenness. All these findings were consistent across three spatial scales (1, 3 and 5 km radius around sampling sites). The decrease in species, abundance and functional richness of bats with forest loss may have implications for the ecological processes they carry out such as seed dispersal, pollination and insect predation, among others.</p></div

    Responses of tropical bats to habitat fragmentation, logging, and deforestation

    Get PDF
    Land-use change is a key driver of the global biodiversity crisis and a particularly serious threat to tropical biodiversity. Throughout the tropics, the staggering pace of deforestation, logging, and conversion of forested habitat to other land uses has created highly fragmented landscapes that are increasingly dominated by human-modified habitats and degraded forests. In this chapter, we review the responses of tropical bats to a range of land-use change scenarios, focusing on the effects of habitat fragmentation, logging, and conversion of tropical forest to various forms of agricultural production. Recent landscape- scale studies have considerably advanced our understanding of how tropical bats respond to habitat fragmentation and disturbance at the population, ensemble and assemblage level. This research emphasizes that responses of bats are often species- and ensemble-specific, sensitive to spatial scale, and strongly molded by the characteristics of the prevailing landscape matrix. Nonetheless, substantial knowledge gaps exist concerning other types of response by bats. Few studies have assessed responses at the genetic, behavioral or physiological level, with regard to disease prevalence, or the extent to which human disturbance erodes the capacity of tropical bats to provide key ecosystem services. A strong geographical bias, with Asia and, most notably, Africa, being strongly understudied, precludes a comprehensive understanding of the effects of fragmentation and disturbance on tropical bats. We strongly encourage increased research in the Paleotropics, and emphasize the need for long-term studies, approaches designed to integrate multiple scales, and answering questions that are key to conserving tropical bats in an era of environmental change and dominance of modified habitats (i.e., the Anthropocene)
    corecore