27 research outputs found

    Machine Learning Automated Detection of Large Vessel Occlusion From Mobile Stroke Unit Computed Tomography Angiography

    Get PDF
    BACKGROUND: Prehospital automated large vessel occlusion (LVO) detection in Mobile Stroke Units (MSUs) could accelerate identification and treatment of patients with LVO acute ischemic stroke. Here, we evaluate the performance of a machine learning (ML) model on CT angiograms (CTAs) obtained from 2 MSUs to detect LVO. METHODS: Patients evaluated on MSUs in Houston and Los Angeles with out-of-hospital CTAs were identified. Anterior circulation LVO was defined as an occlusion of the intracranial internal carotid artery, middle cerebral artery (M1 or M2), or anterior cerebral artery vessels and determined by an expert human reader. A ML model to detect LVO was trained and tested on independent data sets consisting of in-hospital CTAs and then tested on MSU CTA images. Model performance was determined using area under the receiver-operator curve statistics. RESULTS: Among 68 patients with out-of-hospital MSU CTAs, 40% had an LVO. The most common occlusion location was the middle cerebral artery M1 segment (59%), followed by the internal carotid artery (30%), and middle cerebral artery M2 (11%). Median time from last known well to CTA imaging was 88.0 (interquartile range, 59.5-196.0) minutes. After training on 870 in-hospital CTAs, the ML model performed well in identifying LVO in a separate in-hospital data set of 441 images with area under receiver-operator curve of 0.84 (95% CI, 0.80-0.87). ML algorithm analysis time was under 1 minute. The performance of the ML model on the MSU CTA images was comparable with area under receiver-operator curve 0.80 (95% CI, 0.71-0.89). There was no significant difference in performance between the Houston and Los Angeles MSU CTA cohorts. CONCLUSIONS: In this study of patients evaluated on MSUs in 2 cities, a ML algorithm was able to accurately and rapidly detect LVO using prehospital CTA acquisitions

    Automated Large Vessel Occlusion Detection Software and Thrombectomy Treatment Times: a Cluster Randomized Clinical Trial

    Get PDF
    IMPORTANCE: The benefit of endovascular stroke therapy (EVT) in large vessel occlusion (LVO) ischemic stroke is highly time dependent. Process improvements to accelerate in-hospital workflows are critical. OBJECTIVE: to determine whether automated computed tomography (CT) angiogram interpretation coupled with secure group messaging can improve in-hospital EVT workflows. DESIGN, SETTING, AND PARTICIPANTS: This cluster randomized stepped-wedge clinical trial took place from January 1, 2021, through February 27, 2022, at 4 comprehensive stroke centers (CSCs) in the greater Houston, Texas, area. All 443 participants with LVO stroke who presented through the emergency department were treated with EVT at the 4 CSCs. Exclusion criteria included patients presenting as transfers from an outside hospital (n = 158), in-hospital stroke (n = 39), and patients treated with EVT through randomization in a large core clinical trial (n = 3). INTERVENTION: Artificial intelligence (AI)-enabled automated LVO detection from CT angiogram coupled with secure messaging was activated at the 4 CSCs in a random-stepped fashion. Once activated, clinicians and radiologists received real-time alerts to their mobile phones notifying them of possible LVO within minutes of CT imaging completion. MAIN OUTCOMES AND MEASURES: Primary outcome was the effect of AI-enabled LVO detection on door-to-groin (DTG) time and was measured using a mixed-effects linear regression model, which included a random effect for cluster (CSC) and a fixed effect for exposure status (pre-AI vs post-AI). Secondary outcomes included time from hospital arrival to intravenous tissue plasminogen activator (IV tPA) bolus in eligible patients, time from initiation of CT scan to start of EVT, and hospital length of stay. In exploratory analysis, the study team evaluated the impact of AI implementation on 90-day modified Rankin Scale disability outcomes. RESULTS: Among 243 patients who met inclusion criteria, 140 were treated during the unexposed period and 103 during the exposed period. Median age for the complete cohort was 70 (IQR, 58-79) years and 122 were female (50%). Median National Institutes of Health Stroke Scale score at presentation was 17 (IQR, 11-22) and the median DTG preexposure was 100 (IQR, 81-116) minutes. In mixed-effects linear regression, implementation of the AI algorithm was associated with a reduction in DTG time by 11.2 minutes (95% CI, -18.22 to -4.2). Time from CT scan initiation to EVT start fell by 9.8 minutes (95% CI, -16.9 to -2.6). There were no differences in IV tPA treatment times nor hospital length of stay. In multivariable logistic regression adjusted for age, National Institutes of Health Stroke scale score, and the Alberta Stroke Program Early CT Score, there was no difference in likelihood of functional independence (modified Rankin Scale score, 0-2; odds ratio, 1.3; 95% CI, 0.42-4.0). CONCLUSIONS AND RELEVANCE: Automated LVO detection coupled with secure mobile phone application-based communication improved in-hospital acute ischemic stroke workflows. Software implementation was associated with clinically meaningful reductions in EVT treatment times. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05838456

    RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species, Aedes aegypti

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hematophagy is a common trait of insect vectors of disease. Extensive genome-wide transcriptional changes occur in mosquitoes after blood meals, and these are related to digestive and reproductive processes, among others. Studies of these changes are expected to reveal molecular targets for novel vector control and pathogen transmission-blocking strategies. The mosquito <it>Aedes aegypti </it>(Diptera, Culicidae), a vector of Dengue viruses, Yellow Fever Virus (YFV) and Chikungunya virus (CV), is the subject of this study to look at genome-wide changes in gene expression following a blood meal.</p> <p>Results</p> <p>Transcriptional changes that follow a blood meal in <it>Ae. aegypti </it>females were explored using RNA-seq technology. Over 30% of more than 18,000 investigated transcripts accumulate differentially in mosquitoes at five hours after a blood meal when compared to those fed only on sugar. Forty transcripts accumulate only in blood-fed mosquitoes. The list of regulated transcripts correlates with an enhancement of digestive activity and a suppression of environmental stimuli perception and innate immunity. The alignment of more than 65 million high-quality short reads to the <it>Ae. aegypti </it>reference genome permitted the refinement of the current annotation of transcript boundaries, as well as the discovery of novel transcripts, exons and splicing variants. <it>Cis</it>-regulatory elements (CRE) and <it>cis</it>-regulatory modules (CRM) enriched significantly at the 5'end flanking sequences of blood meal-regulated genes were identified.</p> <p>Conclusions</p> <p>This study provides the first global view of the changes in transcript accumulation elicited by a blood meal in <it>Ae. aegypti </it>females. This information permitted the identification of classes of potentially co-regulated genes and a description of biochemical and physiological events that occur immediately after blood feeding. The data presented here serve as a basis for novel vector control and pathogen transmission-blocking strategies including those in which the vectors are modified genetically to express anti-pathogen effector molecules.</p

    SĂ­ndrome de Klippel-Feil: Reporte de un caso

    No full text
    Maurice Klippel y AndrĂ© Feil describieron por primera vez en 1912 este padecimiento.El sĂ­ndrome de Klippel Feil es una enfermedad autosĂłmica dominante con penetranciareducida y expresiĂłn variable, su incidencia se desconoce debido a su rarezay a que la mayorĂ­a de los pacientes son asintomĂĄticos. Se caracteriza por la fusiĂłncongĂ©nita de dos o mĂĄs vĂ©rtebras cervicales, implantaciĂłn baja del cabello, cuellocorto y movilidad limitada. Es comĂșn que este sĂ­ndrome se asocie con la presenciade alteraciones sistĂ©micas y esquelĂ©ticas. El objetivo de este trabajo es presentar laimagen radiolĂłgica de una paciente con este raro sĂ­ndrome de Klippel-Feil

    Women With Large Vessel Occlusion Acute Ischemic Stroke Are Less Likely to Be Routed to Comprehensive Stroke Centers

    No full text
    Background Prehospital routing of patients with large vessel occlusion (LVO) acute ischemic stroke (AIS) to centers capable of performing endovascular therapy may improve clinical outcomes. Here, we explore whether distance to comprehensive stroke centers (CSCs), stroke severity, and sex are associated with direct‐to‐CSC prehospital routing in patients with LVO AIS. Methods and Results In this cross‐sectional study, we identified consecutive patients with LVO AIS from a prospectively collected multihospital registry throughout the greater Houston area from January 2019 to June 2020. Primary outcome was prehospital routing to CSC and was compared between men and women using modified Poisson regression including age, sex, race or ethnicity, first in‐hospital National Institutes of Health Stroke Scale score, travel time, and distances to the closest primary stroke center and CSC. Among 503 patients with LVO AIS, 413 (82%) were routed to CSCs, and women comprised 46% of the study participants. Women with LVO AIS compared with men were older (73 versus 65, P<0.01) and presented with greater National Institutes of Health Stroke Scale score (14 versus 12, P=0.01). In modified Poisson regression, women were 9% less likely to be routed to CSCs compared with men (adjusted relative risk [aRR], 0.91 [0.84–0.99], P=0.024) and distance to nearest CSC ≀10 miles was associated with 38% increased chance of routing to CSC (aRR, 1.38 [1.26–1.52], P<0.001). Conclusions Despite presenting with more significant stroke syndromes and living within comparable distance to CSCs, women with LVO AIS were less likely to be routed to CSCs compared with men. Further study of the mechanisms behind this disparity is needed

    Noncontrast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging Selection in Late Presentation of Stroke With Large-Vessel Occlusion

    Get PDF
    In patients with proximal anterior circulation occlusion stroke presenting in the extended window, are rates of favorable outcomes at 90 days comparable in the patients selected for thrombectomy with noncontrast computed tomography vs patients selected with computed tomography perfusion or magnetic resonance imaging? In a multicenter cohort of 1604 patients in the extended window with large-vessel occlusion, patients selected by noncontrast computed tomography had comparable clinical and safety outcomes with patients selected by computed tomography perfusion or magnetic resonance imaging. These findings suggest noncontrast computed tomography alone may be used as an alternative to advanced imaging in selecting patients with late-presenting large-vessel occlusion for mechanical thrombectomy. This cohort study compares the clinical outcomes of patients with stroke who presented 6 to 24 hours after symptom onset and were selected for mechanical thrombectomy by noncontrast computed tomography vs those selected by computed tomography perfusion or magnetic resonance imaging. Advanced imaging for patient selection in mechanical thrombectomy is not widely available. To compare the clinical outcomes of patients selected for mechanical thrombectomy by noncontrast computed tomography (CT) vs those selected by computed tomography perfusion (CTP) or magnetic resonance imaging (MRI) in the extended time window. This multinational cohort study included consecutive patients with proximal anterior circulation occlusion stroke presenting within 6 to 24 hours of time last seen well from January 2014 to December 2020. This study was conducted at 15 sites across 5 countries in Europe and North America. The duration of follow-up was 90 days from stroke onset. Computed tomography with Alberta Stroke Program Early CT Score, CTP, or MRI. The primary end point was the distribution of modified Rankin Scale (mRS) scores at 90 days (ordinal shift). Secondary outcomes included the rates of 90-day functional independence (mRS scores of 0-2), symptomatic intracranial hemorrhage, and 90-day mortality. Of 2304 patients screened for eligibility, 1604 patients were included, with a median (IQR) age of 70 (59-80) years; 848 (52.9%) were women. A total of 534 patients were selected to undergo mechanical thrombectomy by CT, 752 by CTP, and 318 by MRI. After adjustment of confounders, there was no difference in 90-day ordinal mRS shift between patients selected by CT vs CTP (adjusted odds ratio [aOR], 0.95 [95% CI, 0.77-1.17]; P = .64) or CT vs MRI (aOR, 0.95 [95% CI, 0.8-1.13]; P = .55). The rates of 90-day functional independence (mRS scores 0-2 vs 3-6) were similar between patients selected by CT vs CTP (aOR, 0.90 [95% CI, 0.7-1.16]; P = .42) but lower in patients selected by MRI than CT (aOR, 0.79 [95% CI, 0.64-0.98]; P = .03). Successful reperfusion was more common in the CT and CTP groups compared with the MRI group (474 [88.9%] and 670 [89.5%] vs 250 [78.9%]; P < .001). No significant differences in symptomatic intracranial hemorrhage (CT, 42 [8.1%]; CTP, 43 [5.8%]; MRI, 15 [4.7%]; P = .11) or 90-day mortality (CT, 125 [23.4%]; CTP, 159 [21.1%]; MRI, 62 [19.5%]; P = .38) were observed. In patients undergoing proximal anterior circulation mechanical thrombectomy in the extended time window, there were no significant differences in the clinical outcomes of patients selected with noncontrast CT compared with those selected with CTP or MRI. These findings have the potential to widen the indication for treating patients in the extended window using a simpler and more widespread noncontrast CT-only paradigm

    Noncontrast Computed Tomography vs Computed Tomography Perfusion or Magnetic Resonance Imaging Selection in Late Presentation of Stroke With Large-Vessel Occlusion.

    No full text
    Advanced imaging for patient selection in mechanical thrombectomy is not widely available. To compare the clinical outcomes of patients selected for mechanical thrombectomy by noncontrast computed tomography (CT) vs those selected by computed tomography perfusion (CTP) or magnetic resonance imaging (MRI) in the extended time window. This multinational cohort study included consecutive patients with proximal anterior circulation occlusion stroke presenting within 6 to 24 hours of time last seen well from January 2014 to December 2020. This study was conducted at 15 sites across 5 countries in Europe and North America. The duration of follow-up was 90 days from stroke onset. Computed tomography with Alberta Stroke Program Early CT Score, CTP, or MRI. The primary end point was the distribution of modified Rankin Scale (mRS) scores at 90 days (ordinal shift). Secondary outcomes included the rates of 90-day functional independence (mRS scores of 0-2), symptomatic intracranial hemorrhage, and 90-day mortality. Of 2304 patients screened for eligibility, 1604 patients were included, with a median (IQR) age of 70 (59-80) years; 848 (52.9%) were women. A total of 534 patients were selected to undergo mechanical thrombectomy by CT, 752 by CTP, and 318 by MRI. After adjustment of confounders, there was no difference in 90-day ordinal mRS shift between patients selected by CT vs CTP (adjusted odds ratio [aOR], 0.95 [95% CI, 0.77-1.17]; P = .64) or CT vs MRI (aOR, 0.95 [95% CI, 0.8-1.13]; P = .55). The rates of 90-day functional independence (mRS scores 0-2 vs 3-6) were similar between patients selected by CT vs CTP (aOR, 0.90 [95% CI, 0.7-1.16]; P = .42) but lower in patients selected by MRI than CT (aOR, 0.79 [95% CI, 0.64-0.98]; P = .03). Successful reperfusion was more common in the CT and CTP groups compared with the MRI group (474 [88.9%] and 670 [89.5%] vs 250 [78.9%]; P &lt; .001). No significant differences in symptomatic intracranial hemorrhage (CT, 42 [8.1%]; CTP, 43 [5.8%]; MRI, 15 [4.7%]; P = .11) or 90-day mortality (CT, 125 [23.4%]; CTP, 159 [21.1%]; MRI, 62 [19.5%]; P = .38) were observed. In patients undergoing proximal anterior circulation mechanical thrombectomy in the extended time window, there were no significant differences in the clinical outcomes of patients selected with noncontrast CT compared with those selected with CTP or MRI. These findings have the potential to widen the indication for treating patients in the extended window using a simpler and more widespread noncontrast CT-only paradigm

    Reperfusion Without Functional Independence in Late Presentation of Stroke With Large Vessel Occlusion.

    No full text
    Reperfusion without functional independence (RFI) is an undesired outcome following thrombectomy in acute ischemic stroke. The primary objective was to evaluate, in patients presenting with proximal anterior circulation occlusion stroke in the extended time window, whether selection with computed tomography (CT) perfusion or magnetic resonance imaging is associated with RFI, mortality, or symptomatic intracranial hemorrhage (sICH) compared with noncontrast CT selected patients. The CLEAR study (CT for Late Endovascular Reperfusion) was a multicenter, retrospective cohort study of stroke patients undergoing thrombectomy in the extended time window. Inclusion criteria for this analysis were baseline National Institutes of Health Stroke Scale score ≄6, internal carotid artery, M1 or M2 segment occlusion, prestroke modified Rankin Scale score of 0 to 2, time-last-seen-well to treatment 6 to 24 hours, and successful reperfusion (modified Thrombolysis in Cerebral Infarction 2c-3). Of 2304 patients in the CLEAR study, 715 patients met inclusion criteria. Of these, 364 patients (50.9%) showed RFI (ie, mRS score of 3-6 at 90 days despite successful reperfusion), 37 patients (5.2%) suffered sICH, and 127 patients (17.8%) died within 90 days. Neither imaging selection modality for thrombectomy candidacy (noncontrast CT versus CT perfusion versus magnetic resonance imaging) was associated with RFI, sICH, or mortality. Older age, higher baseline National Institutes of Health Stroke Scale, higher prestroke disability, transfer to a comprehensive stroke center, and a longer interval to puncture were associated with RFI. The presence of M2 occlusion and higher baseline Alberta Stroke Program Early CT Score were inversely associated with RFI. Hypertension was associated with sICH. RFI is a frequent phenomenon in the extended time window. Neither magnetic resonance imaging nor CT perfusion selection for mechanical thrombectomy was associated with RFI, sICH, and mortality compared to noncontrast CT selection alone. URL: https://www. gov; Unique identifier: NCT04096248

    The Society of Vascular and Interventional Neurology (SVIN) Mechanical Thrombectomy Registry: Outcomes in Patients With Acute Ischemic Stroke and COVID‐19

    No full text
    Background Clinical and radiographic outcomes after mechanical thrombectomy in the setting of COVID‐19 infection remain poorly characterized. We sought to determine how COVID‐19 status affects mechanical thrombectomy outcomes in the real‐world setting in the United States. Methods The prospectively maintained multicenter mechanical thrombectomy registry from the Society of Vascular and Interventional Neurology was queried for baseline clinical characteristics among patients with and without COVID‐19 who underwent mechanical thrombectomy between March 1 and December 31, 2020 at 12 sites. Primary outcome was the likelihood of good neurological outcomes (90 day modified Rankin scale 0–2) among patients with COVID‐19 treated with endovascular thrombectomy, which was assessed using multivariable logistic regression adjusted for age, National Institutes of Health Stroke Scale, Alberta Stroke Program Early CT Score, and substantial reperfusion (modified Thrombolysis in Cerebral Infarction 2b, 2c, and 3). Secondary outcomes included National Institutes of Health Stroke Scale at 24 hours. Results Among 915 patients who underwent mechanical thrombectomy during the study period, 51 patients were positive for COVID‐19 (5.6%). Univariate analysis revealed that compared with patients who were COVID‐19 negative, patients who were positive for COVID‐19 were more likely to be male, nonsmokers, have lower Alberta Stroke Program Early CT Score, and present with intracranial internal carotid artery occlusions (Table 1). They were also less likely to achieve successful reperfusion. Multivariable analysis, however, failed to identify any independent associations with COVID‐19 positive status. Conclusion In our cohort, patients postive for COVID‐19 with acute ischemic stroke who undergo mechanical thrombectomy have similar baseline characteristics, imaging features, procedural, and clinical outcomes compared to patients who are negative for COVID‐19 in multivariate analysis. Further analyses are warranted
    corecore