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Abstract

Background and Purpose: Pre-hospital automated large vessel occlusion (LVO) detection in 

Mobile Stroke Units (MSUs) could accelerate identification and treatment of patients with LVO 

acute ischemic stroke. Here, we evaluate the performance of a machine learning (ML) model on 

CT angiograms (CTAs) obtained from two MSUs to detect LVO.

Methods: Patients evaluated at MSUs in Houston and Los Angeles with out-of-hospital CTAs 

were identified. Anterior circulation LVO was defined as an occlusion of the intracranial internal 

carotid artery (ICA), middle cerebral artery (MCA M1 or M2) or anterior cerebral artery (ACA ) 
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vessels and determined by an expert human reader. A ML model to detect LVO was trained 

and tested on independent datasets consisting of in-hospital CTAs and then tested on MSU CTA 

images. Model performance was determined using area under the receiver-operator curve (ROC) 

statistics.

Results: Among 68 patients with out-of-hospital MSU CTAs, 40% had an LVO. The most 

common occlusion location was the MCA M1 segment (59%), followed by the ICA (30%) and 

MCA M2 (11%). Median time from last known well to CTA imaging was 88.0 [interquartile range 

IQR 59.5, 196.0] minutes. After training on 870 in-hospital CTAs, the ML model performed well 

in identifying LVO in a separate in-hospital dataset of 441 images with area under ROC curve 

(AUC) of 0.84 [95% confidence interval, CI 0.80–0.87]. ML algorithm analysis time was under 

1 minute. The performance of the ML model on the MSU CTA images was comparable with 

AUC 0.80 [95% CI 0.71–0.89]. There was no significant difference in performance between the 

Houston and Los Angeles MSU CTA cohorts.

Conclusions: In this study of patients evaluated on MSUs in two cities, a ML algorithm was 

able to accurately and rapidly detect LVO using pre-hospital CTA acquisitions.

Indexing Terms:

stroke; prehospital; mobile stroke unit; computed tomography; machine learning; endovascular 
treatment

Subject Terms:

ischemic stroke; cerebrovascular disease/stroke

Introduction:

Automated detection of large vessel occlusion (LVO) acute ischemic stroke in the pre-

hospital setting could substantially accelerate treatment times for endovascular stroke 

therapy. Many Mobile Stroke Units (MSUs) have the capability to perform both non-contrast 

head computed tomography (NCHCT) as well as computed tomography angiography (CTA). 

An automated and accurate algorithm to analyze CTA images for LVO could provide crucial 

decision support to pre-hospital triage decisions, allowing routing of LVO patients directly to 

thrombectomy-capable centers and faster post-arrival door-to-puncture times.1–4 However, 

the performance of such algorithms on MSU images, which can be of variable quality 

compared to conventional in-hospital acquisitions and are typically performed earlier after 

onset, remains undetermined.

We previously developed a machine learning (ML) algorithm to identify LVO from CTA 

images, which demonstrated exceptional performance using in-hospital conventional CTA 

acquisitions.5 The algorithm leverages brain symmetry information to make decisions on 

outcome variables. In this study, we explore the hypothesis that an ML algorithm trained and 

validated on in-hospital CTA images will have suitable performance in LVO detection using 

CTA images acquired in the field from multiple MSUs in two different cities.
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Methods:

Data Availability

The data that support the findings of this study are available from the corresponding author 

upon reasonable request, after clearance by the local ethics committee. Ethics approval was 

obtained from the local UTHealth Institutional Review Board, and the need for patient 

consent was waived (HSC-MS-18–0175). A data transfer agreement between the two 

institutions (UCLA and UTHealth) was obtained prior to study conduct.

Study Population

The patient population in this study was derived from two prospectively collected MSU 

cohorts. The first cohort consisted of patients treated in the Houston-based MSU. This 

MSU evaluates patients suspected of acute ischemic stroke within 4.5 hours of last known 

normal. Patients are evaluated initially with NCHCT, and eligible patients are treated on 

scene with intravenous tissue plasminogen activator (IV tPA). On-board CTA is obtained 

immediately after the start of the tPA infusion in patients using a Ceretom 8 slice CT scanner 

with an OptiStat hand injector system (4 mL/second). All imaging occurred on scene while 

the ambulance was flat and stationary following strict radiation safety guidelines. Patients 

evaluated from October 2017 through March 2020 in the Houston MSU were included in 

this analysis.

Patients were also included in this analysis from the Los Angeles-based MSU. This MSU 

evaluates patients for any focal neurological symptoms within 24 hours of onset, and the 

initial imaging study is a NCHCT using a Ceretom 8 slice CT scanner. Patients with 

suspicion of LVO based on clinical exam also undergo CTA of the brain using an OptiStat 

hand injector system (4 mL/second). Patients evaluated from October 2017 through April 

2020 were included in this analysis.

From these two combined cohorts, patients were included in this analysis if they underwent 

CTA in the field on the MSU. Patients were excluded if image quality precluded expert 

reader determination of LVO (see below).

Study Design

DeepSymNet-v2 LVO Detection—DeepSymNet-v2 is a machine learning algorithm 

based on a 3-dimensional convolutional neural network that leverages symmetry information 

in the brain hemispheres to efficiently learn imaging patterns predictive of stroke-related 

outcomes. In our previous works, we described the first iteration of the algorithm, 

DeepSymNet that was used to detect LVO,6 estimate infarct core5 and detect hemorrhagic 

stroke.7 In this work, we employ an updated version, DeepSymNet-v2, that includes 

improvements in the pre-processing steps and network architecture. Briefly, the image 

registration pipeline was streamlined by including a CTA-specific template, a multi-

resolution pipeline and automatic field of view selection of the anterior circulation. Then, 

network architecture was improved by using a symmetric and non-symmetric path, reduced 

the number of parameters by using more efficient building blocks, skip connections8 and 
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batch normalization.9 The entire DeepSymNet-v2 pipeline was run using a single 2.5GHz 

computing core and a Tesla V100 Nvidia GPU.

DeepSymNet-v2 was trained and tested on an independent dataset of inpatient-acquired CTA 

scans. The training dataset consisted of 870 CTA (n=419 with LVO and n=451 without 

LVO) images. All images were acquired from in-hospital Siemens and General Electric 

scanners from 4 different sites, with the LVO determination was based on radiology reports. 

The model was then tested on a separate testing dataset of 441(n=121 with LVO and n=320 

without LVO) in-hospital CTAs. The performance of DeepSymNet-v2 on this in-hospital 

dataset was then reported using area under the receiver-operator curve (AUC ROC) statistics. 

Then, without any further re-training or parameter tuning, the network was then tested on a 

dataset of CTA images acquired on the two MSUs.

Reporting guideline of clinical artificial intelligence (AI) modelling research is provided 

using the MI-CLAIM checklist10 (Supplemental Table I).

Primary Outcome—The primary outcome of the study was the performance of 

DeepSymNet at predicting anterior circulation LVO. This outcome was measured by the 

area under the ROC curve statistic. The output of the DeepSymNet-v2 model is a probability 

of likelihood of LVO, and this probability was then compared against the gold standard of 

expert reader interpretation of LVO (binary yes/no) and analyzed using ROC analysis.

LVO Determination—The determination of LVO was made by independent review of all 

the MSU CTA imaging by a single vascular and interventional neurologist with significant 

experience in neuroimaging reads (SAS). The reader was blinded to the DeepSymNet-v2 

LVO predictions. Patients were included if they harbored an occlusion of the anterior 

circulation, including the internal carotid artery (ICA), middle cerebral artery (MCA M1 or 

M2) and/or anterior cerebral artery (ACA). Our cohort was limited to anterior circulation 

occlusions to be consistent with the indications for guideline-based thrombectomy, as well 

as other LVO-detection algorithms, which are indicated for use only for anterior circulation. 

Patients were excluded if the imaging quality was insufficient for the expert reader to 

make a determination of the presence/absence of LVO. Studies were also excluded if image 

pre-processing for the ML algorithm including registration and bone-stripping could not be 

performed. A total of 9 studies were excluded for poor contrast bolus or timing and 1 study 

was excluded due to significant artifact from large metallic implant.

Statistical Analysis

For the description of the characteristics of the study population, percentages are reported 

for categorical variables, and medians [interquartile range, IQR] for continuous variables. 

The Fisher’s exact test and Mann-Whitney U test were used to compare categorical 

and continuous variables between patient groups, respectively. ML model performance 

was evaluated using area under the ROC statistics. All statistical tests were 2-sided and 

conventional levels of significance (α = 0.05) were used for interpretation. Stata 14 

(StataCorp LLC, College Station, TX) and Prism 7 (GraphPad, La Jolla, CA) software were 

used for data analysis.

Czap et al. Page 4

Stroke. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results:

Among 78 patients with CTAs performed on MSUs, 68 had adequate imaging quality 

and met inclusion criteria for the study. Among all patients, median age was 73.9 [IQR 

62.4, 82.2] years, and 48.7% were female. The most common vascular risk factors were 

hypertension (74.4%), diabetes (29.5%) and hyperlipidemia (29.5%). Median time from 

last known well to CTA acquisition was 86.5 [IQR 56.5, 187.8] minutes. Among the 

68 patients, 27 (40%) patients harbored LVO. 65% received IV tPA. The most common 

occlusion location was the MCA M1 (59%), followed by ICA (30%) and MCA M2 (11%). 

Demographics and clinical characteristics are detailed in Table 1. The only parameter 

different among the groups was greater National Institutes of Health Stroke Scale (NIHSS) 

in LVO patients.

Inpatient CTA Performance

After training on a dataset of 870 in-hospital acquired CTAs as described above, 

DeepSymNet-v2 was then tested on an independent dataset of 441 in-hospital CTAs. 

DeepSymNet-v2 achieved an area under ROC curve (AUC) of 0.84 [95% confidence 

interval, CI 0.80–0.87] for identifying LVO, as shown in Supplemental Figure I.

MSU CTA Performance

Representative non-contrast CT and CTA images of a patient with a left MCA occlusion 

acquired in the MSU are shown in Figure 1. The performance of DeepSymNet-v2 at 

identifying LVO in MSU-based CTAs is shown in Figure 2, with area under the ROC 

curve of 0.80 [95% CI 0.71–0.89]. ML algorithm running time was < 1 minute per 

imaging study. Sensitivity and specificity results at different DeepSymNet-v2 probability 

thresholds are given in Supplemental Table II. There was no significant difference between 

the DeepSymNet-v2 performance in the Houston and Los Angeles-based cohorts (AUC 0.85 

[95% CI 0.73–0.94] vs 0.75 [95% CI 0.52–0.89], p=0.44 with DeLong test for unpaired 

ROC curves) (Supplemental Figure II).

Discussion:

In this study of imaging data from two MSUs, an ML algorithm trained on in-hospital 

CTA acquisitions was able to detect the presence of anterior circulation LVO using 

MSU-acquired images in an accurate, automated and rapid fashion. The performance was 

comparable between two different scanners in the two MSUs studied, and comparable to 

the performance achieved using in-hospital scanners. These findings suggest that automated 

LVO detection in MSUs can be achieved using ML algorithms trained primarily on in-

hospital acquisitions.

LVO detection in the pre-hospital setting could provide a significant reduction in treatment 

times for these patients. It is well known that the largest period of time lost in onset 

to treatment time for patients with LVO is the pre-hospital setting, especially when 

patients are first brought to a non-thrombectomy center and require secondary transfer to 

a thrombectomy center.11 LVO detection could allow for accurate triage with direct to 

comprehensive stroke center delivery, potentially direct to angiography suites, and avoid 
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inter-hospital transfer. In addition, prior studies have shown that even patients that are 

brought to Comprehensive Stroke Centers have shorter hospital arrival to treatment times 

when an LVO has been identified in an MSU.3 Moving forward, non-CT based diagnostic 

testing may broaden the generalizability of such approaches.12

One of the challenges with MSU image analyses has been image acquisition and quality. 

As such, the performance of LVO-detection algorithms on MSU images is unknown. In this 

study, the performance of our DeepSymNet-v2 algorithm is comparable to performances 

of several commercially available software packages using in-hospital images (Viz.ai AUC 

0.86, Rapid AUC 0.85, MeThinks 0.87).13,14 The performance reported by commercial 

packages and DeepSymNetv2 have not been tested head-to-head on the same dataset, 

and thus all direct comparisons should be taken with care. While there remains room for 

improvement in MSU-CTA LVO detection, our findings here demonstrating that evaluating 

an algorithm trained purely on an external dataset of in-hospital CTA performed relatively 

well on MSU images suggest that further improvement of LVO detection software on 

in-hospitals scanners will also improve MSU detection. This approach, of training on in-

hospital CTAs to improve MSU CTA analysis performance, may be beneficial as imaging 

datasets of MSU CTAs will be substantially smaller than in-hospital CTA datasets, limiting 

the capacity for ML algorithms to learn off of MSU CTAs alone.

An additional challenge with MSU CTA analyses is that imaging acquisitions typically 

occur substantially sooner after last known well than with in-hospital imaging. As a result, 

MSU scans are likely to be evaluating patients with smaller clot burdens in whom thrombus 

growth in stagnant arterial segments has not yet occurred and may be evaluating patients 

with better collaterals before collateral failure occurs.15,16 The results of the current study 

indicate that the temporal evolution of these physiologic processes is infrequent or relatively 

slow, so that a ML trained on in-hospital scans performed well on MSU CTAs.

Our study has several limitations. First, our cohort was limited to patient for whom an LVO 

determination could be made by a human reader. Future study following this present study 

comparing ML LVO detection to MSU physician read LVO detection will be needed to 

determine the accuracy of novel approaches in the prehospital setting. In addition, posterior 

circulation occlusions and smaller, more distal anterior circulation occlusions were not 

included in this analysis. This study design, however, is consistent with the evaluations of 

other LVO-detection ML algorithms.

Conclusion:

In this study of patients evaluated on MSUs in two cities, a ML algorithm was able 

to accurately detect LVO using out-of-hospital CTA acquisitions. Algorithm performance 

was comparable to the performance when run on in-hospital CTA acquisitions and when 

compared against other ML packages.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

LVO Large vessel occlusion

MSU Mobile Stroke Unit

ML Machine learning

CTA Computed tomography angiogram

ICA Internal carotid artery

MCA Middle cerebral artery

ACA Anterior cerebral artery

ROC Receiver-operator curve

IQR Interquartile range

AUC Area under ROC curve

CI Confidence interval

NCHCT Non-contrast head computed tomography

IV tPA Intravenous tissue plasminogen activator

NIHSS National Institutes of Health Stroke Scale

LKW Last known well
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Figure 1: Representative CT images from MSU.
Ceretom 8 slice CT images acquired in an out-of-hospital setting on mobile stroke unit of 

a patient with left MCA occlusion. Non-contrast head CT (a), and CTA slices (b and c) are 

shown. Arrow points to location of the MCA M1 occlusion.
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Figure 2. DeepSymNet-v2 performance for LVO detection from MSU CTA.
ROC curve with 95% confidence intervals.
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Table 1.

Demographics and Clinical Characteristics for Combined Mobile Stroke Unit Sites

Characteristic
All

N=68
LVO
N=27

Non-LVO
N=41

P-value

Age, median [IQR] 73.2 [62.5, 82.1] 79.0 [63.7 83.9] 71.8 [62.3, 79.5] 0.27

Female, N (%) 35 (51.5) 13 (48.1) 22 (53.7) 0.84

Past Medical History, N (%)

Prior Stroke 20 (29.4) 9 (33.3) 11 (26.8) 0.87

Atrial Fibrillation 12 (17.6) 5 (18.5) 7 (17.1) 1.00

Coronary Artery Disease / Myocardial Disease 10 (14.7) 4 (14.8) 6 (14.6) 1.00

Diabetes Mellitus 21 (30.9) 8 (29.6) 13 (31.7) 1.00

Hyperlipidemia 19 (27.9) 7 (25.9) 12 (29.3) 0.87

Hypertension 50 (73.5) 17 (63.0) 33 (80.5) 0.19

Smoking 9 (13.2) 5 (18.5) 4 (9.8) 0.57

Initial NIHSS, median [IQR] 10.0 [6.5, 17.5] 17.5 [10.0, 23.0] 7.0 [5.0, 12.0] <0.01

Receipt of IV tPA, N (%) 44 (64.7) 18 (66.7) 26 (63.4) 0.99

Occlusion Location, N (%) <0.01

ICA 8 (11.8) 8 (29.6) 0 (0.0)

MCA M1 16 (23.5) 16 (59.3) 0 (0.0)

MCA M2 3 (4.4) 3 (11.1) 0 (0.0)

No LVO 41 (60.3) 0 (0.0) 41 (100.0)

Imaging Acquisition, median [IQR], minutes

LKW to CTA 88.0 [59.5, 196.0] 88.0 [65.5, 177.5] 88.0 [55.0, 208.0] 0.88

Abbreviations: Large vessel occlusion (LVO), interquartile range (IQR), National Institutes of Health Stroke Scale (NIHSS), intravenous (IV), 
tissue plasminogen activator (tPA), internal carotid artery (ICA), middle cerebral artery (MCA), last known well (LKW), computed tomography 
angiography (CTA)
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