41 research outputs found

    Sensitivity of a Greenland ice sheet model to atmospheric forcing fields

    Get PDF
    International audiencePredicting the climate for the future and how it will impact ice sheet evolution requires coupling ice sheet models with climate models. However, before we attempt to develop a realistic coupled setup, we propose, in this study, to first analyse the impact of a model simulated climate on an ice sheet. We undertake this exercise for a set of regional and global climate models. Modelled near surface air temperature and precipitation are provided as upper boundary conditions to the GRISLI (GRenoble Ice Shelf and Land Ice model) hybrid ice sheet model (ISM) in its Greenland configuration. After 20 kyrs of simulation, the resulting ice sheets highlight the differences between the climate models. While modelled ice sheet sizes are generally comparable to the observed one, there are considerable deviations among the ice sheets on regional scales. These deviations can be explained by biases in temperature and precipitation near the coast. This is especially true in the case of global models. But the deviations between the climate models are also due to the differences in the atmospheric general circulation. To account for these differences in the context of coupling ice sheet models with climate models, we conclude that appropriate downscaling methods will be needed. In some cases, systematic corrections of the climatic variables at the interface may be required to obtain realistic results for the Greenland ice sheet (GIS)

    Greenland ice sheet contribution to sea level rise during the last interglacial period: a modelling study driven and constrained by ice core data

    No full text
    International audienceAs pointed out by the forth assessment report of the Intergovernmental Panel on Climate Change, IPCC-AR4 (Meehl et al., 2007), the contribution of the two major ice sheets, Antarctica and Greenland, to global sea level rise, is a subject of key importance for the scientific community. By the end of the next century, a 3–5 °C warming is expected in Greenland. Similar temperatures in this region were reached during the last interglacial (LIG) period, 130–115 ka BP, due to a change in orbital configuration rather than to an anthropogenic forcing. Ice core evidence suggests that the Greenland ice sheet (GIS) survived this warm period, but great uncertainties remain about the total Greenland ice reduction during the LIG. Here we perform long-term simulations of the GIS using an improved ice sheet model. Both the methodologies chosen to reconstruct palaeoclimate and to calibrate the model are strongly based on proxy data. We suggest a relatively low contribution to LIG sea level rise from Greenland melting, ranging from 0.7 to 1.5 m of sea level equivalent, contrasting with previous studies. Our results suggest an important contribution of the Antarctic ice sheet to the LIG highstand

    Natural forcing of climate during the last millennium: fingerprint of solar variability

    No full text
    International audienc

    How does the atmospheric variability drive the aerosol residence time in the Arctic region?

    No full text
    International audienceThis paper aims at characterizing the impact of the atmospheric variability on the aerosol burden and residence time in the Arctic region. For this purpose, a global simulation using an emissions inventory from the year 2000 is performed for the period 2000-2005. The model thus describes a 6-year evolution of sulphate, black carbon (BC) and mineral dust, whose variability is driven by the atmosphere only. Our simulation is validated thanks to comparisons with surface observations. The aerosol residence time takes minimum values in fall: 4 days for sulphate and 8 days for BC and dust. It takes maximum values in June: 10 days for sulphate and 16 days for BC and dust. However, from one spring to another, it can vary by about 50% for sulphate, 40% for BC and 100% for dust, depending on the atmospheric variability. In June, sulphate, BC and dust burden averaged over the Arctic region reach respectively maximums of 1.9 mg[S] m-², 0.2 mg m-² and 6 mg m-², characteristic of the so-called "Arctic haze". From one year to another, these values can vary by 20% for sulphate, 10% for BC and 60% for dust

    Simulation du climat récent et futur par les modèles du CNRM et de l'IPSL

    No full text
    Dans le cadre de la préparation du 4e rapport du Groupe intergouvernemental sur l'évolution du climat (Giec), qui doit paraître début 2007, les principales équipes de modélisation de par le monde ont réalisé un important exercice coordonné de simulation de l'évolution du climat au cours des XXe et XXIe siècles. Nous présentons ici les résultats obtenus par les modèles du CNRM et de l'IPSL, en évoquant les progrès réalisés depuis le précédent rapport du Giec. Nous replaçons également nos résultats par rapport à ceux des autres modèles, et indiquons les résultats qui sont communs à l'ensemble des modèles et ceux qui peuvent être différents

    Northern hemisphere storm tracks during the last glacial maximum in the PMIP2 ocean-atmosphere coupled models: energetic study, seasonal cycle, precipitation

    No full text
    International audienceMid-latitude eddies are an important component of the climatic system due to their role in transporting heat, moisture and momentum from the tropics to the poles, and also for the precipitation associated with their fronts, especially in winter. We study northern hemisphere storm-tracks at the Last Glacial Maximum (LGM) and their influence on precipitation using ocean-atmosphere general circulation model (OAGCM) simulations from the second phase of the Paleoclimate Modelling Intercomparison Project (PMIP2). The difference with PMIP1 results in terms of sea-surface temperature forcing, fundamental for storm-track dynamics, is large, especially in the eastern North Atlantic where sea-ice extends less to the south in OAGCMs compared to atmospheric-only GCMs. Our analyses of the physics of the eddies are based on the equations of eddy energetics. All models simulate a consistent southeastward shift of the North Pacific storm-track in winter, related to a similar displacement of the jet stream, partly forced by the eddies themselves. Precipitation anomalies are consistent with storm-track changes, with a southeastward displacement of the North Pacific precipitation pattern. The common features of North Atlantic changes in the LGM simulations consist of a thinning of the storm-track in its western part and an amplification of synoptic activity to the southeast, in the region between the Azores Islands and the Iberian Peninsula, which reflects on precipitation. This southeastward extension is related to a similar displacement of the jet, partly forced by the eddies. In the western North Atlantic, the synoptic activity anomalies are at first order related to baroclinic generation term anomalies, but the mean-flow baroclinicity increase due to the presence of the Laurentide ice-sheet is partly balanced by a loss of eddy efficiency to convert energy from the mean flow. Moisture availability in this region is greatly reduced due to more advection of dry polar air by stationary waves, leading to less synoptic-scale latent heat release and hence less precipitation also. In terms of seasonality, the stormy season is shifted later in the year by a few days to a month depending on the season and the model considered. This shift does not directly reflect on the first-order seasonal cycle of precipitation, which also depends on other mechanisms, especially in summer

    Quantifying uncertainties of sandy shoreline change projections as sea level rises

    No full text
    Sandy shorelines are constantly evolving, threatening frequently human assets such as buildings or transport infrastructure. In these environments, sea-level rise will exacerbate coastal erosion to an amount which remains uncertain. Sandy shoreline change projections inherit the uncertainties of future mean sea-level changes, of vertical ground motions, and of other natural and anthropogenic processes affecting shoreline change variability and trends. Furthermore, the erosive impact of sea-level rise itself can be quantified using two fundamentally different models. Here, we show that this latter source of uncertainty, which has been little quantified so far, can account for 20 to 40% of the variance of shoreline projections by 2100 and beyond. This is demonstrated for four contrasting sandy beaches that are relatively unaffected by human interventions in southwestern France, where a variance-based global sensitivity analysis of shoreline projection uncertainties can be performed owing to previous observations of beach profile and shoreline changes. This means that sustained coastal observations and efforts to develop sea-level rise impact models are needed to understand and eventually reduce uncertainties of shoreline change projections, in order to ultimately support coastal land-use planning and adaptation
    corecore