131 research outputs found

    Investigation of ferroelectric behavior of Bi(Fe,Sc)O3 multiferroics using piezoresponse force microscopy

    Full text link
    This work was supported by the TUMOCS project that has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 645660

    Spontaneous and induced ferroelectricity in the BiFe1−xScxO3 perovskite ceramics

    Get PDF
    High-pressure synthesis method allows obtaining single-phase perovskite BiFe1-xScxO3 ceramics in the entire concentration range. As-prepared compositions with x from 0.30 to 0.55 have the antipolar orthorhombic Pnma structure but can be irreversible converted into the polar rhombohedral R3c or the polar orthorhombic Ima2 phase via annealing at ambient pressure. Microstructure defects and large conductivity of the high-pressure-synthesized ceramics make it difficult to study and even verify their ferroelectric properties. These obstacles can be overcome using piezoresponse force microscopy (PFM) addressing ferroelectric behavior inside single grains. Herein, the PFM study of the BiFe1-xScxO3 ceramics (0.30 ≤ x ≤ 0.50) is reported. The annealed samples show a strong PFM contrast. Switching of domain polarity by an electric field confirms the ferroelectric nature of these samples. The as-prepared BiFe0.5Sc0.5O3 ceramics demonstrate no piezoresponse in accordance with the antipolar character of the Pnma phase. However, application of a strong enough electric field induces irreversible transition to the ferroelectric state. The as-prepared BiFe0.7Sc0.3O3 ceramics show coexistence of ferroelectric and antiferroelectric grains without poling. It is assumed that mechanical stress caused by the sample polishing can be also a driving force of phase transformation in these materials alongside temperature and external electric field.publishe

    Annealing-Dependent Morphotropic Phase Boundary in the BiMg0.5Ti0.5O3–BiZn0.5Ti0.5O3 Perovskite System

    Get PDF
    The annealing behavior of (1-x)BiMg0.5Ti0.5O3–xBiZn0.5Ti0.5O3 [(1-x)BMT–xBZT] perovskite solid solutions synthesized under high pressure was studied in situ via X-ray diffraction and piezoresponse force microscopy. The as prepared ceramics show a morphotropic phase boundary (MPB) between the non-polar orthorhombic and ferroelectric tetragonal states at 75 mol. % BZT. It is shown that annealing above 573 K results in irreversible changes in the phase diagram. Namely, for compositions with 0.2 < x < 0.6, the initial orthorhombic phase transforms into a ferroelectric rhombohedral phase. The new MPB between the rhombohedral and tetragonal phases lies at a lower BZT content of 60 mol. %. The phase diagram of the BMT–BZT annealed ceramics is formally analogous to that of the commercial piezoelectric material lead zirconate titanate. This makes the BMT–BZT system promising for the development of environmentally friendly piezoelectric ceramicspublishe

    Exchange bias phenomenon in (Nd1-xYx)2/3Ca1/3MnO3 (x = 0, 0.1) perovskites

    Get PDF
    Exchange bias phenomenon, evident of antiferromagnetic-ferromagnetic phase segregation state, has been observed in (Nd1-xYx)2/3Ca1/3MnO3 (x = 0, 0.1) compounds at low temperatures. A contribution to the total magnetization of the compounds due to the ferromagnetic phase has been evaluated. It has been found that yttrium doping leads to the growth of the ferromagnetic phase fraction. The ferromagnetic phase in the doped compound has a lower coercivity Hc and more rectangular form of the hysteresis loop. The values of the exchange bias field HEB and coercivity are found to be strongly dependent on the cooling magnetic field Hcool. In sufficiently high magnetic fields, Hcool > 5 kOe, HEB in the doped compound is about twice as low as in the parent compound. This difference is attributed to a lower exchange interaction and higher saturation magnetization of the ferromagnetic phase in (Nd0.9Y0.1)2/3Ca1/3MnO3

    Magnetic ordering in Co2+-containing layered double hydroxides via the low-temperature heat capacity and magnetisation study

    Get PDF
    The low-temperature heat capacity and the magnetisation of Co2+ n Al3+ layered double hydroxides (LDH) with the cobalt-to-aluminium ratio n = 2 and 3 and intercalated with different anions have been studied in a wide range of magnetic fields up to 50 kOe. The heat capacity, C(T), was found to demonstrate a Schottky-like anomaly observed as a broad local maximum in the temperature dependence below 10 K. The effect is caused by a splitting of the ground-state Kramers doublet of Co2+ in the internal exchange field and correlates with magnetic ordering in these LDH. In low applied fields, the temperature-dependent dc magnetic susceptibility demonstrates a pronounced rise, which is associated with an onset of magnetic ordering. Both the heat capacity anomaly and the magnetic susceptibility peak are more pronounced for the LDH with n = 2 than for those with n = 3. This feature is associated with an excess of the honeycomb-like Co–Al coordination (which corresponds to a 2:1 Co–Al ordering) over the statistical cation distribution in Co2Al LDH, while a rather random cobalt-aluminium distribution is typical for Co3Al LDH. The temperature of the Schottky-like anomaly measured in a zero field is independent of the interlayer distance. Application of the magnetic field results in a widening of the anomaly range and a shift to higher temperatures. The observed experimental data are typical for a cluster spin glass ground state.publishe

    Exchange bias effect in bulk multiferroic BiFe0.5Sc0.5O3

    Get PDF
    Below the Néel temperature, TN ∼ 220 K, at least two nano-scale antiferromagnetic (AFM) phases coexist in the polar polymorph of the BiFe0.5Sc0.5O3 perovskite; one of these phases is a weak ferromagnetic. Non-uniform structure distortions induced by high-pressure synthesis lead to competing AFM orders and a nano-scale spontaneous magnetic phase separated state of the compound. Interface exchange coupling between the AFM domains and the weak ferromagnetic domains causes unidirectional anisotropy of magnetization, resulting in the exchange bias (EB) effect. The EB field, HEB, and the coercive field strongly depend on temperature and the strength of the cooling magnetic field. HEB increases with an increase in the cooling magnetic field and reaches a maximum value of about 1 kOe at 5 K. The exchange field vanishes above TN with the disappearance of long-range magnetic ordering. The effect is promising for applications in electronics as it is large enough and as it is tunable by temperature and the magnetic field applied during cooling.publishe

    Phase formation in the (1- y )BiFeO 3 - y BiScO 3 system under ambient and high pressure

    Get PDF
    Formation and thermal stability of perovskite phases in the BiFe1-yScyO3 system (0≤y≤0.70) were studied. When the iron-to-scandium substitution rate does not exceed about 15 at%, the single-phase perovskite ceramics with the rhombohedral R3c symmetry (as that of the parent compound, BiFeO3) can be prepared from the stoichiometric mixture of the respective oxides at ambient pressure. Thermal treatment of the oxide mixtures with a higher content of scandium results in formation of two main phases, namely a BiFeO3-like R3c phase and a cubic (I23) sillenite-type phase based on γ-Bi2O3. Single-phase perovskite ceramics of the BiFe1-yScyO3 composition were synthesized under high pressure from the thermally treated oxide mixtures. When y is between 0 and 0.25 the high-pressure prepared phase is the rhombohedral R3c with the √2ap×√2ap×2√3ap superstructure (ap ~ 4 Å is the pseudocubic perovskite unit-cell parameter). The orthorhombic Pnma phase (√2ap×4ap×2√2ap) was obtained in the range of 0.30≤y≤0.60, while the monoclinic C2/c phase (√6ap×√2ap×√6ap) is formed when y=0.70. The normalized unit-cell volume drops at the crossover from the rhombohedral to the orthorhombic composition range. The perovskite BiFe1-yScyO3 phases prepared under high pressure are metastable regardless of their symmetry. At ambient pressure, the phases with the compositions in the ranges of 0.20≤y≤0.25, 0.30≤y<0.50 and 0.50≤y≤0.70 start to decompose above 970, 920 and 870 K, respectivelypublishe

    Cast iron corrosion protection with chemically modified Mg Al layered double hydroxides synthesized using a novel approach

    Get PDF
    Layered double hydroxides (LDHs) intercalated with corrosion inhibitive species are considered as promising additives to protection coatings. However, the conventional method of LDH preparation via co-precipitation followed by anion exchange is a water consuming and slow process hardly applicable to industrial use. In this work, a novel approach to LDH synthesis via hydration of sol-gel prepared mixed metal oxides and two-step anion exchange, all assisted by high-power sonication, was applied. Mg—Al and Mg-Al-Ce LDH with cations ratios 2:1 and 2:0.9:0.1, respectively, intercalated with corrosion inhibitive dihydrogen phosphate anion were successfully prepared. The obtained LDH were characterized by X-ray diffraction and scanning transmission electron microscopy. Anion release from these LDH in NaCl solutions and their corrosion inhibitive action on cast iron samples were monitored by electrochemical impedance spectroscopy. The results show that the dihydrogen-phosphate-intercalated LDHs produced using the novel technique are efficient in corrosion protection.publishe

    Spin Effects in Two Quark System and Mixed States

    Get PDF
    Based on the numeric solution of a system of coupled channels for vector mesons (SS- and DD-waves mixing) and for tensor mesons (PP- and FF-waves mixing) mass spectrum and wave functions of a family of vector mesons qqˉq\bar{q} in triplet states are obtained. The calculations are performed using a well known Cornell potential with a mixed Lorentz-structure of the confinement term. The spin-dependent part of the potential is taken from the Breit-Fermi approach. The effect of singular terms of potential is considered in the framework of the perturbation theory and by a configuration interaction approach (CIA), modified for a system of coupled equations. It is shown that even a small contribution of the DD-wave to be very important at the calculation of certain characteristics of the meson states.Comment: 12 pages, LaTe
    corecore