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Abstract  

Layered double hydroxides (LDHs) intercalated with corrosion inhibitive species are 

considered as promising additives to protection coatings. However, the conventional method 

of LDH preparation via co-precipitation followed by anion exchange is a water consuming 

and slow process hardly applicable to industrial use.  

In this work, a novel approach to LDH synthesis via hydration of sol-gel prepared 

mixed metal oxides and two-step anion exchange, all assisted by high-power sonication, was 

applied. Mg-Al and Mg-Al-Ce LDH with cations ratios 2:1 and 2:0.9:0.1, respectively, 

intercalated with corrosion inhibitive dihydrogen phosphate anion were successfully prepared.  

The obtained LDH were characterized by X-ray diffraction and scanning transmission 

electron microscopy. Anion release from these LDH in NaCl solutions and their corrosion 

inhibitive action on cast iron samples were monitored by electrochemical impedance 

spectroscopy. The results show that the dihydrogen-phosphate-intercalated LDHs produced 

using the novel technique are efficient in corrosion protection. 
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1. Introduction  

A wide variety of protective coatings from one-layer coatings to complex combinations are 

used nowadays on metallic structures owing to the easy application and cost efficiency.[1] 

Coating performance is dependent on intrinsic properties of the film (barrier properties), 

substrate/coating interface and the inhibitive pigments used to prevent corrosion in aggressive 

environments. 

A great attention is paid to the development of new protective materials that can replace 

toxic chromium (VI) based compounds as effective corrosion inhibitors. A number of organic 

and inorganic species intercalated into layered structures has been proposed and optimized for 

application in protective coatings [1]. LDH crystallites act as smart nanocontainers that 

release the inhibitive species only when corrosion conditions occur [2]. 

Layered double hydroxides (LDHs) are composed of positively-charged mixed metal 

M
II
-M

III
 hydroxide layers with charge-compensating anions A

y-
 and water molecules 

intercalated between layers [3]. Metal cations in the layers are coordinated by six oxygen 

atoms forming 2-D structures of edge-linked oxygen octahedra. General formula of most 

common LDHs can be represented as [M
II

1-xM
III

x(OH)2]
x+

(A
y-

)x/y·zH2O. Parameters x and z can 

vary over wide ranges thereby enabling flexibility of the LDH structure and allowing 

intercalation of anions with different sizes and charges [3–6].  

LDH are typically characterized by hexagonal symmetry with the c-axis perpendicular 

to the layers (space group 3R m ) [7]. Parameter a is a function of both size and ratio of 

cations M
II
 and M

III
 [8,9]. The c parameter depends mainly on size, charge and orientation of 

the intercalated species [8,10,11].  

The main method of LDH production is co-precipitation followed by anion-exchange 

(Miyata approach [12]). This method is rather direct and reproducible; however, it is slow and 

water-consuming.  

In this work, we report on the layered double hydroxides of the [Mg1-xAlx(OH)2]
x+

(A
y-

)x/y·zH2O system (hereafter Mg(n)Al-A, where n=(1-x)/x is the Mg/Al molar ratio) prepared 

using a novel approach. This approach is less water consuming than the conventional co-

precipitation one since excludes several stages of the LDH washing. Mg(2)Al-OH LDH was 

formed by hydration of a mixture of metal oxides prepared via the sol-gel followed by 

intercalation with dihydrogen phosphate anion after successive anion exchanges ОН
-
 → Cl

-
 

and Cl
-
 → H2PO4

-
. The stages of synthesis and anion exchange were considerably accelerated 

by application of high-power sonication. In addition, a phosphate-intercalated Mg(2)Al LDH 

with 10 mol.% of aluminium substituted by Ce
III

, Mg(2)Al-10%Ce-H2PO4, was prepared by 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

3 

 

 

same procedures. Cerium-substituted LDH was suggested to exhibit additional protection 

functionality owing to corrosion-inhibitive properties of Ce
III

-containing species: the products 

of decomposition of the nanocontainer itself may additionally provide useful effects.  

Obtained LDHs were characterized by X-ray diffraction (XRD) and scanning 

transmission electron microscopy (STEM). The inhibition efficiency and the protective 

properties of the released phosphate on the cast iron substrate were evaluated using 

electrochemical impedance spectroscopy.  

The final objective of this work was to study the corrosion protection functionality of 

the layered double hydroxides synthesized using a novel approach, including LDHs whose 

metal hydroxide layers were modified with cerium. 

 

2. Experimental 

2.1. Materials  

Aluminium nitrate nonahydrate (≥98.5%), magnesium nitrate hexahydrate (≥99%), cerium 

nitrate hexahydrate (99.99%), sodium chloride (99.9%), ethylene glycol (99%), hydrochloric 

acid (36%), were purchased from Sigma-Aldrich, Sodium phosphate dibasic dihydrate 

(>98%) was purchased from Carl Roth, and nitric acid (66%) from REACHEM. Deionised 

and decarbonised water was used in all solutions for synthesis and anion exchange as well as 

for washing final compounds. 

The cast iron (GG20) samples were provided by SEW-EURODRIVE Portugal LDA.  

2.2. Synthesis of magnesium-aluminium and magnesium-aluminium-cerium LDH via sol-gel 

method 

Sol-gel method in LDH preparation [13] emerged as an alternative to the conventional co-

precipitation method.  

Appropriate metal nitrates were dissolved in 50 ml of distilled water with addition of 50 

ml of 0.2 M nitric acid. To prepare Mg-Al (Mg-Al-Ce) metal oxides, the solutions were 

mixed with a molar ratio of Mg:Al = 2:1 (Mg:Al:Ce = 2:0.9:0.1). The obtained mixtures were 

stirred for 1 h at 80°C. Then 2 ml of ethylene glycol was added with continuous stirring for 4 

h at the same temperature. After slow evaporation of solvent, the obtained gel was dried at 

130°C for 12 h. Mixed metal oxides (MMO) of the Mg(2)Al and Mg(2)Al-10%Ce cation 

compositions were produced by calcination of the dried gel powders for 3 h at 650ºC. The 

layered double hydroxides were formed as a result of hydration of the MMO powders in 

deionized water at room temperature. To accelerate the process, high-power sonication was 

applied for 30 min. This stage of LDH formation (synthesis) as well the sonication-assisted 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

4 

 

 

anion exchange reactions were performed using a VCX 1500 Sonics processor (max output 

power 1.5 kW at 20 kHz) equipped with a high-volume continuous flow cell.  

The final powder LDH samples were obtained by vacuum filtration followed by drying 

at 60°C for 24 hours.  

2.3. Anion exchange and formation of chlorine- and phosphate-intercalated LDH 

At the hydration stage of MMO in deionised and decarbonised water, the only available anion 

for intercalation was OH
-
. Obtained LDH were Mg(2)Al-OH and Mg(2)Al-10%Ce-OH. It 

was recently shown that direct hydroxide-to-phosphate anion exchange is unlikely but can be 

implemented via formation of the intermediate chlorine-intercalated phase [14]. 

For a OH
-
→ Cl

-
 anion-exchange, 1 g of Mg(2)Al-OH was added to 250 ml of 1 M NaCl 

solution at room temperature. The mixture was sonicated for 4 min. The obtained slurry was 

put in vacuum filtration without any additional washing and dried for 24 hours at 60°C. 

Chloride-to-phosphate anion exchange was carried out in a 0.1 M Na2HPO4 solution at 

room temperature. 1 g of the Mg(2)Al-Cl powder was immersed in the solution followed by 

addition of NaH2PO4 to adjust the pH value to 7.5. At such conditions, the intercalated anion 

is dihydrogen phosphate, H2PO4
-
 [14]. The reaction was sonication-assisted and took 8 min. 

The obtained slurry was filtered and dried at the same conditions as mentioned above.  

Similar process was used for the hydroxide-to-chloride and chloride-to-phosphate 

exchange reactions in Mg(2)Al-10%Ce LDHs.  

2.4. Analytical characterization 

X-ray diffraction (XRD) characterization of all LDH compositions was performed using a 

PANalytical X'Pert Powder diffractometer (Ni-filtered Cu Kα radiation, Theta–Theta 

goniometer in the reflection mode, PIXcel 1D detector, step 0.02°, exposition time ~1.5 s per 

step) at room temperature.  

Observations of particle shapes and agglomerations were carried out using a Hitachi 

HD-2700 scanning transmission electron microscope (STEM) in both bright field and 

HAADF (High-angle annular dark field) modes with accelerating voltage of 200 kV. Small 

amounts of the LDH slurries of each composition where dispersed in ethanol solution using 

an ultrasound bath and deposited on TEM grids. 

2.5. Electrochemical characterization 

For the electrochemical measurements, a three-electrode cell with a large platinum auxiliary 

electrode, a saturated calomel reference electrode (SCE) and a working electrode with an 

exposed area of 1 cm
2
 bare cast iron was used. 
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The electrochemical impedance measurements were performed using the Autolab 

PGSTAT30 over a frequency range of 100 kHz–10 mHz with seven points per decade. 

A 50 mM NaCl solution prepared by adding NaCl (reagent grade) to distilled water 

served as corrosive medium. To analyse the inhibitor efficiency in aqueous media, three 

different conditions were applied. First, the cast iron samples were immersed in a 50 mM 

NaCl solution with pH 6.73, to evaluate the resistance of the metal in the aggressive 

environment. In the second case, 0.071 g of NaPO4 was added to 50 mM NaCl solution (100 

ml) to form a solution of 5 mM NaPO4 and 50 mM NaCl with pH 8.55. In the third case, 0.25 

g of phosphate-intercalated LDH, with molar mass of 50 g / mol, was added to the 50 mM 

NaCl solution (100 ml) to obtain a solution of 5 mM phosphate-intercalated LDH + 50 mM 

NaCl with pH 8.65. Three samples were tested for each the above-mentioned solutions to 

ensure reproducibility of the measurements.  

 

3. Results and discussion 

3.1. Analysis of phase content and chemical composition 

XRD patterns of powders from the high-power sonication assisted synthesis and of successive 

anion exchanges are shown in Figure 1. The typical diffraction reflections representing the 

3R m  LDH structure are observed in all patterns.  

Analysis of the XRD patterns of as-synthesized Mg(2)Al-OH and Mg(2)Al-10%Ce-OH 

confirmed the formation of single-phase LDH compositions. The XRD patterns of the 

compositions obtained as a result of the anion exchanges demonstrated a regular shift of the 

diffraction peaks of the (00l) family towards lower angles indicating that the hydroxide-to-

chloride and chloride-to-phosphate substitutions were complete. As seen from Figure 1, the 

former is accompanied by a considerable increase of the basal spacing (the distance between 

the neighbouring hydroxide layers).  

Lattice parameters a and c of the obtained LDH were calculated using the inter-planar 

distances corresponded to the angular positions of the diffraction peaks (003), (006) and (110) 

as c = 3/2[d(003) + 2d(006)] and a = 2d(110) [3]. Values of the lattice parameters are listed in 

Table I. Basal spacing was calculated as d=c/3, and the interlayer height (gallery height, h) 

was found by subtracting the hydroxide layer thickness from the basal spacing value. The 

Mg(2)Al hydroxide layer thickness was considered to be 0.477 nm [15]. The gallery height 

values calculated for Mg(2)Al-OH and Mg(2)Al-Cl are in a good agreement with double van 

der Waals radii of oxygen and chlorine, respectively. The h-value estimated for Mg(2)Al-
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H2PO4 suggests that the phosphate anion is arranged in a such way that a line along its 

maximum dimension is perpendicular to the layer plane [14].  

The lattice parameters values of cerium-substituted LDH compositions were found to be 

regularly higher than the corresponding values of Mg(2)Al LDH intercalated with the same 

anions (see Table I). This reflects the increase of the hydroxide layer thickness caused by a 

partial substitution of Al
3+

 by a larger sized Ce
3+

. The observed values of a-parameter of Ce-

substituted LDHs were found to be in good with the calculated using the expression proposed 

by Richardson (Ref [16]) for the case of two different trivalent cations: 

2
( )

2

3 31
sin( )[ ( ) (1 ) ( ) ( )]

2 2

       LDH Mg OHa a r Mg x r Al xr Ce  

 

 

Figure 1. XRD patterns of the compositions produced by hydration of the sol-gel 

prepared mixed metal oxides followed by two-step (hydroxide-to-chloride and 

chloride-to-phosphate) anion exchange: a) - Mg(2)Al-OH (I), Mg(2)Al-Cl (II), and 

Mg(2)Al-H2PO4 (III); b) - Mg(2)Al-10%Ce-OH (IV), Mg(2)Al-10%Ce-Cl (V), and 

Mg(2)Al-10%Ce-H2PO4 (VI).  
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Table I. The lattice parameters (a, c) and basal spacings (d) for the LDH compositions 

intercalated with different anions.  

Composition c, nm a, nm d, nm 

Mg(2)Al-OH 2.2950 0.3049 0.7650 

Mg(2)Al-Cl 2.3426 0.3052 0.7808 

Mg(2)Al-H2PO4 3.2662 0.3051 1.0887 

Mg(2)Al-10%Ce-OH 2.3100 0.3052   0.7700 

Mg(2)Al-10%Ce-Cl 2.3565 0.3052 0.7855 

Mg(2)Al-10%Ce-H2PO4 3.2945 0.3054 1.0981 

 

 

3.2. Microscopy characterization  

STEM was used to visualize possible effect of high-power sonication applied during synthesis 

on the crystallite size of LDH. For this purpose, Mg(2)Al-OH was prepared using the 

procedure described in Experimental but without sonication. The MMO powder was hydrated 

in deionized water under continuous stirring for 12 h [14]. STEM images of 

particles/crystallites of Mg(2)Al-OH and Mg(2)Al-10%Ce-OH LDH obtained with or without 

the ultrasound treatment are shown in Figure 2. 

In all the above-mentioned cases, hexagonal flake-shaped crystallites inherent to the 

layered double hydroxides were observed. The characteristic size (diameter) of the flakes was 

estimated to range from 50 to 150 nm. It should be noticed here that the typical size of 

Mg(2)Al LDH prepared using the conventional methods via co-precipitation from nitrates is 

in the range of 50-200 nm [6].  

Based on comparative analysis of series of the STEM images, we concluded that the 

high-power sonication did not impact either size or shape of the LDH crystallites. But, the 

crystallites of LDH produced with application of ultrasounds were found to be less 

agglomerated.  
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Figure 2. STEM images of fully dispersed LDH particles/crystallites: a) - Mg(2)Al-OH 

produced by hydration of the sol-gel prepared mixed metal oxides without high-power 

sonication, b) and c) - Mg(2)Al-OH and Mg(2)Al-10%Ce- OH, respectively, produced by 

sonication-assisted hydration of the sol-gel prepared mixed metal oxides.  

 

3.3 Electrochemical characterization and corrosion protection 

EIS was used to evaluate the corrosion progress in the solutions containing corrosion-

inducing and corrosion inhibitive species. 

Initially, the cast iron substrates were immersed in two test solutions (50 mM NaCl and 

50 mM NaCl + 5 mM Na2HPO4) as described in Experimental to reveal the effect of 
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phosphate anions on the sample surface in a corrosive media. Figure 3 shows the EIS spectra 

acquired after 2 to 168 h of immersion in the solutions.  

 

 

Figure 3. EIS spectra for the cast iron substrate immersed a) in a 50 mM NaCl solution and 

b) in a 50 mM NaCl + 5 mM Na2HPO4 solution (Solid symbols denote the total impedance, 

empty symbols denote the phase angle). 

 

Total impedance (|Z|) at relevant frequencies is the main parameter used for corrosion 

activity assessment in all studied substrate-solution systems.  

It has been observed that the impedance decreased immediately after the first minute of 

immersion of the iron substrate in the 50 mM NaCl solution. The values of impedance 

observed in the spectra in Figure 3a suggest the formation of corrosion products on the 

surface of the sample, justifying the slow decrease of low frequency impedance through the 

168 h of measurement. 

When the sample is immersed in the solution containing Na2HPO4 (Figure 3b) the 

impedance values is stable at least during 24 h. After this period of time, due to oxide 

formation and deposition of phosphate on the substrate, the values of |Z| increase again; 

however, a part of the sample was kept protected even after one week of immersion. 
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The images of the cast iron substrates immersed for one week in a NaCl solution either 

without or with the corrosion inhibitive species are shown in Figure 4.  

 

 

Figure 4. The cast iron substrates after 1-week immersion a) in a 50 mM NaCl solution and 

b) in a 50 mM NaCl + 5 mM Na2HPO4 solution. 

 

Images in Figure 4 indicate that phosphate species are effective for corrosion protection 

of cast iron when introduced in the 50 mM NaCl solution. The presence of corrosion signs 

(pitting corrosion) on the surface of the sample in Figure 4b can be explained by the 

insufficient amount of phosphate species (5 mM Na2HPO4 in a 50 mM NaCl solution) to 

protect the entire surface.  

The next step of the study was an immersion test using the inhibitive species 

intercalated into the LDH produced using the novel approach, Mg(2)Al-H2PO4. The same test 

was also performed in the solution containing Mg(2)Al-OH for comparison. Figure 5 shows 

the EIS spectra acquired after 2 to 168 h of immersion in the respective solutions. 
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Figure 5. EIS spectra for the cast iron substrate immersed in solutions containing the layered 

double hydroxides a) 50 mM NaCl + 5 mM Mg(2)Al-OH and b) 50 mM NaCl + 5 mM 

Mg(2)Al-H2PO4. (Solid symbols denote the total impedance, empty symbols denote the phase 

angle). 

 

Mg(2)Al-OH layered double hydroxide in a NaCl solution releases OH
-
 and traps Cl

-
 

increasing the pH to 12. Since hydroxide anion has no corrosion inhibitive ability, the 

impedance values slowly decrease until formation of iron oxide (Figure 5a). After about 48 h 

of immersion, the hydroxide-to-chloride anion exchange reaction seems to be completed and 

the local decrease of chloride ions causes partial protection of the cast iron (the plot at 168 h). 

Figure 5b shows a gradual increase of the impedance after 24 h and until one-week 

immersion in a 50 mM NaCl + 5 mM Mg(2)Al-H2PO4 solution that indicates the effective 

anticorrosion performance of the Mg(2)Al-H2PO4 LDH as a nanocontainer of inhibitive 

species that releases H2PO4
-
 and captures Cl

-
. The final aspect of the sample (Figure 6) with 

less pitting corrosion in the surface was better than the one after the same time of immersion 

in a 50 mM NaCl + 5 mM Na2HPO4 solution (Figure 4b) although the amounts of phosphates 

in both tests were the same. 
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Figure 6. The cast iron substrate after a 1-week immersion in a 50 mM NaCl solution with 

addition of 5 mM Mg(2)Al-H2PO4 LDH. 

 

To support the results obtained from the immersion test, an XRD study of the corrosion 

products collected from the surface of the samples after 1-week immersion was performed. 

Figure 7 shows the XRD patterns of the products precipitated/formed on the surface of 

each cast iron sample. 

 

Figure 7. XRD patterns of the corrosion products collected from the cast iron substrates immersed 

a) in a 50 mM NaCl solution, b) in a 50 mM NaCl + 5 mM Na2HPO4 solution and c) in a 50 mM 

NaCl + 5 mM Mg(2)Al-H2PO4 LDH solution. 

 

It is seen from Figure 7 that immersion in these three solutions resulted in precipitation 

and formation of different phases on the sample surface. The corrosion product formed in case 

of immersion in a 50 mM NaCl solution (the pattern a) is an iron oxide that is in good 

agreement with the optical photo (Figure 4a). The XRD pattern b demonstrates a presence of 

iron phosphate hydrate. It is suggested that chlorine anions promote dissolution of iron from 

the substrate followed by reaction with Na2HPO4 in the solution and a precipitation of iron 

phosphate. The corrosion products collected from the surface of the sample immersed in a 50 

mM NaCl + 5 mM Mg(2)Al-H2PO4 LDH solution (the pattern c) seems to contain an LDH 

phase with the angle positions of the basal diffraction reflections that correspond to those of 
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Mg(2)Al-Cl LDH. However, as its pattern overlaps that of sodium phosphate hydrate a 

distinction cannot be done. Also, peaks for iron phosphate hydrate can be found in the same 

sample.  

The corrosion protection functionality of a Ce-substituted layered double hydroxide 

intercalated with dihydrogen phosphate was also studied. The EIS results obtained for the 

samples immersed in the NaCl solution containing Mg(2)Al-10%Ce-H2PO4 for 2-168 h were 

found to be essentially similar to those presented above for the case of Mg(2)Al-H2PO4 LDH. 

As mentioned in Introduction (lines 69-70), Ce
III

-containing species in the products of 

decomposition of the LDH nanocontainer itself may provide additional protection effect. 

However, to estimate such an effect, a much longer immersion time is needed alongside with 

the continuous exposition of the Mg(2)Al-10%Ce LDH to UV radiation to promote the LDH 

degradation. This study is in progress. 

 

4. Conclusions 

High-power sonication assisted synthesis and anion-exchange were successfully applied to 

produce LDH intercalated with dihydrogen phosphate (H2PO4
-
), demonstrating this novel 

approach as an efficient alternative to the conventional co-precipitation synthesis technique.  

Parent OH
-
-intercalated LDH with cation compositions Mg(2)Al and Mg(2)Al-10%Ce 

were synthesized by hydration of sol-gel prepared mixed metal oxides. Mg(2)Al-H2PO4 and 

Mg(2)Al-10%Ce-H2PO4 LDH were obtained from the parent compositions via sequential 

anion exchanges from OH
-
 to Cl

-
 and from Cl

-
 to H2PO4

-
, respectively. Application of high-

power sonication at the stages of synthesis and anion exchange turns the processes to be much 

faster than when the conventional LDH preparation technique is used. Crystallites of the LDH 

produced using the novel approach are of dimensions and shape similar to those (hexagonal 

flake shaped, 50-150 nm sized) typical of Mg(2)Al LDH prepared using the conventional co-

precipitation route.  

Efficiency of the layered double hydroxides produced using the novel approach as 

nanocontainers was demonstrated via corrosion protection effect of dihydrogen phosphate 

released from these LDH on cast iron substrate in a NaCl solution.  

 

 

 

 

 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

14 

 

 

Acknowledgements  

The work was supported by project MULTISURF. This project has received funding from the 

European Union’s Horizon 2020 research and innovation programme under the Marie 

Skłodowska-Curie grant agreement No 645676.  

The financial support of P2020 COMPETE and FCT-Portugal through project POCI-

01-0145-FEDER-016686 - PTDC/CTM-NAN/2418/2014 (NANOCONCOR) is gratefully 

acknowledged. The authors acknowledge SEW-EURODRIVE Portugal LDA (www.sew-

eurodrive.pt) for collaboration in frame of this project.  

The research carried out in the University of Aveiro was in the scope of the project 

CICECO - Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. 

UID/CTM/50011/2013).  

D. E. L. Vieira acknowledges the financial support of this work through AdvaMtech 

PhD programme scholarship PD/BD/143033/2018. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

15 

 

 

References 

 

[1] M.F. Montemor, Functional and smart coatings for corrosion protection: A review of 

recent advances, Surf. Coatings Technol. 258 (2014) 17–37. 

doi:10.1016/j.surfcoat.2014.06.031. 

 

[2] J. Tedim, A. Kuznetsova, A.N. Salak, F. Montemor, D. Snihirova, M. Pilz, M.L. 

Zheludkevich, M.G.S. Ferreira, Zn-Al layered double hydroxides as chloride nanotraps in 

active protective coatings, Corros. Sci. 55 (2012) 1–4. doi:10.1016/j.corsci.2011.10.003. 

 

[3] D.G. Evans, R.C.T. Slade, Structural Aspects of Layered Double Hydroxides, Struct. 

Bond. 119 (2006) 1–87. doi:10.1007/430_005. 

 

[4] A.I. Khan, D. O’Hare, Intercalation chemistry of layered double hydroxides: recent 

developments and applications, J. Mater. Chem. 12 (2002) 3191–3198. 

doi:10.1039/b204076j. 

 

[5] A.N. Salak, J. Tedim, A.I. Kuznetsova, L. G. Vieira, J.L. Ribeiro, M.L. Zheludkevich, M. 

G. S. Ferreira, Thermal Behavior of Layered Double Hydroxide Zn-Al- Pyrovanadate: 

Composition, Structure Transformations, and Recovering Ability, J. Phys. Chem. C. 117 

(2013) 4152–4157. doi: 10.1021/jp312512y. 

 

[6] M. Serdechnova, A.N. Salak, F.S. Barbosa, D.E.L. Vieira, J. Tedim, M.L. Zheludkevich, 

M.G.S. Ferreira, Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate 

and 1,2,3-benzotriazolate anions in layered double hydroxides: In situ X-ray diffraction 

study, J. Solid State Chem. 233 (2016) 158–165. doi:10.1016/j.jssc.2015.10.023. 

 

[7] D.E.L. Vieira, A.N. Salak, A. V. Fedorchenko, Y.G. Pashkevich, E.L. Fertman, V.A. 

Desnenko, R.Y. Babkin, E. Čižmár, A. Feher, A.B. Lopes, M.G.S. Ferreira, Magnetic 

phenomena in Co-containing layered double hydroxides, Low Temp. Phys. 43 (2017) 

1214–1218. doi:10.1063/1.5001299. 

 

[8] S.P. Newman, W. Jones, Layered double hydroxides as templates for the formation of 

supramolecular structures, Supramol. Organ. Mater. Des. Cambridge Univ. Press. 

Cambridge, UK. (2001) 295–331. https://doi.org/10.1017/CBO9780511564987.010 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

16 

 

 

 

[9] I.G. Richardson, Zn- and Co-based layered double hydroxides: Prediction of the a 

parameter from the fraction of trivalent cations and vice versa, Acta Crystallogr. Sect. B 

Struct. Sci. Cryst. Eng. Mater. 69 (2013) 414–417. doi:10.1107/S2052519213017545. 

 

[10] A.N. Salak, J. Tedim, A.I. Kuznetsova, J.L. Ribeiro, L.G. Vieira, M.L. Zheludkevich, 

M.G.S. Ferreira, Comparative X-ray diffraction and infrared spectroscopy study of Zn-Al 

layered double hydroxides: Vanadate vs nitrate, Chem. Phys. 397 (2012) 102–108. 

doi:10.1016/j.chemphys.2012.01.026. 

 

[11] A.N. Salak, A.D. Lisenkov, M.L. Zheludkevich, M.G.S. Ferreira, Carbonate-free Zn-Al 

(1:1) layered double hydroxide film directly grown on zinc-aluminum alloy coating, ECS 

Electrochem. 3 (2014) C9–C11. doi: 10.1149/2.008401eel 

 

[12] S. Miyata, T. Kumura, Synthesis of New Hydrotalcite-Like Compounds and Their 

Physico-Chemical Properties, Chem. Lett. 2 (1973) 843–848. doi:10.1246/cl.1973.843. 

 

[13] A. Smalenskaite, D.E.L. Vieira, A.N. Salak, M.G.S. Ferreira, A. Katelnikovas, A. 

Kareiva, A comparative study of co-precipitation and sol-gel synthetic approaches to 

fabricate cerium-substituted Mg-Al layered double hydroxides with luminescence 

properties, Appl. Clay Sci. 143 (2017) 175–183. doi:10.1016/j.clay.2017.03.036. 

 

[14] D. Sokol, D.E.L. Vieira, A. Zarkov, M.G.S. Ferreira, A. Beganskiene, V.V. Rubanik, 

A.D. Shilin, A. Kareiva, A.N. Salak, Sonication accelerated formation of Mg-Al-

phosphate layered double hydroxides via sol-gel prepared mixed metal oxides - accepted 

to Scientific reports. 

 

[15] G.W. Brindley, C.C. Kao, Structural and IR relations among brucite-like divalent metal 

hydroxides, Phys. Chem. Miner. 10 (1984) 87–191. doi: 10.1007/BF00311476.  

 

[16] I.G. Richardson, The importance of proper crystal-chemical and geometrical reasoning 

demonstrated using layered single and double hydroxides, Acta Crystallogr. Sect. B 

Struct. Sci. Cryst. Eng. Mater. 69 (2013) 150–162. doi:10.1107/S205251921300376X. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

17 

 

 

 

 
 

Graphical abstract 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

18 

 

 

Highlights 

Sol-gel route to ensure stoichiometry of chemically modified layered double hydroxides. 

High-power sonication acceleration effect in layered double hydroxide synthesis. 

Efficient corrosion protection via phosphate-intercalated layered double hydroxide. 
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