110 research outputs found

    Review: Effects of Ractopamine Hydrochloride (Paylean) on welfare indicators for market weight pigs

    Get PDF
    This review summarizes the effects of ractopamine hydrochloride (RAC) dose (5, 7.5, 10, and 20 mg/kg) on market weight pig welfare indicators. Ractopamine hydrochloride (trade name Paylean) is a β-adrenergic agonist that was initially approved in the U.S. in 1999 at doses of 5 to 20 mg/kg to improve feed efficiency and carcass leanness. However, anecdotal reports suggested that RAC increased the rate of non-ambulatory (fatigued and injured) pigs at U.S. packing plants. This led to the addition of a caution statement to the Paylean label, and a series of research studies investigating the effects of RAC on pig welfare. Early research indicated that: (1) regardless of RAC administration, fatigued (non-ambulatory, non-injured) pigs are in a state of metabolic acidosis; (2) aggressive handling increases stress responsiveness at 20 mg/kg RAC, while 5 mg/kg reduces stress responsiveness to aggressive handling. Given this information, dosage range for Paylean was changed in 2006 to 5 to 10 mg/kg in market weight pigs. Subsequent research on RAC demonstrated that: (1) RAC has minimal effects on mortality, lameness, and home pen behavior; (2) RAC fed pigs demonstrated inconsistent prevalence and intensity of aggressive behaviors; (3) RAC fed pigs may be more difficult to handle at doses above 5 mg/kg; and (4) RAC fed pigs may have increased stress responsiveness and higher rates of non-ambulatory pigs when subjected to aggressive handling, especially when 20 mg/kg of RAC is fed

    Blood immunometabolic indices and polymorphonuclear neutrophil function in peripartum dairy cows are altered by level of dietary energy prepartum

    Get PDF
    Cows experience some degree of negative energy balance and immunosuppression around parturition, making them vulnerable to metabolic and infectious diseases. The effect of prepartum feeding of diets to meet (control, 1.34 Mcal/kg of dry matter) or exceed (overfed, 1.62 Mcal/kg of dry matter) dietary energy requirements was evaluated during the entire dry period (∼45 d) on blood polymorphonuclear neutrophil function, blood metabolic and inflammatory indices, and milk production in Holstein cows. By design, dry matter intake in the overfed group (n=9) exceeded energy requirements during the prepartum period (-4 to -1 wk relative to parturition), resulting in greater energy balance when compared with the control group (n=10). Overfed cows were in more negative energy balance during wk 1 after calving than controls. No differences were observed in dry matter intake, milk yield, and milk composition between diets. Although nonesterified fatty acid concentration pre- (0.138 mEq/L) and postpartum (0.421 mEq/L) was not different between diets, blood insulin concentration was greater in overfed cows prepartum (16.7 μIU/mL) compared with controls pre- and postpartum (∼3.25 μIU/mL). Among metabolic indicators, concentrations of urea (4.63 vs. 6.38 mmol/L), creatinine (100 vs. 118 μmol/L), and triacylglycerol (4.0 vs. 8.57 mg/dL) in overfed cows were lower prepartum than controls. Glucose was greater pre- (4.24 vs. 4.00 mmol/L) and postpartum (3.49 vs. 3.30 mmol/L) compared with control cows. Among liver function indicators, the concentration of bilirubin increased by 2 to 6 fold postpartum in control and overfed cows. Phagocytosis capacity of polymorphonuclear neutrophils was lower prepartum in overfed cows (32.7% vs. 46.5%); phagocytosis in the control group remained constant postpartum (50%) but it increased at d 7 in the overfed group to levels similar to controls (48.4%). Regardless of prepartum diet, parturition was characterized by an increase in nonesterified fatty acid and liver triacylglycerol, as well as blood indices of inflammation (ceruloplasmin and haptoglobin), oxidative stress (reactive oxygen metabolites), and liver injury (glutamic oxaloacetic transaminase). Concentrations of the antioxidant and anti-inflammatory compounds vitamin A, vitamin E, and β-carotene decreased after calving. For vitamin A, the decrease was observed in overfed cows (47.3 vs. 27.5 μg/100 mL). Overall, overfeeding energy and higher energy status prepartum led to the surge of insulin and had a transient effect on metabolism postpartum

    Immune phenotype is differentially affected by changing the type of bovine respiratory disease vaccine administered at revaccination in beef heifers

    Get PDF
    During preconditioning, modified-live vaccines are frequently administered to beef calves before weaning. In this study, we began to characterize the immune phenotype of calves that received a modified-live vaccination at 3–4 months of age and then either received the same modified-live or an inactivated vaccine upon arrival at the feedlot (weaning) and 28 days post-arrival (booster). Innate and adaptive immune measures were assessed before revaccination and 14 and 28 days post. Heifers that received three doses of the modified-live vaccine exhibited a relatively balanced immune response based on increases in mean cytokine concentrations (IL-17, IL-21) and total immunoglobulin-G (IgG) and subsets IgG1 and IgG2, which are related to both arms of the adaptive immune system. Conversely, heifers that received one dose of modified live and two doses of the inactivated vaccine had a more robust neutrophil chemotactic response and greater serum-neutralizing antibody titers, resulting in an enhanced innate immune and a skewed proinflammatory response. These results indicate that the revaccination protocol used after initial vaccination with a modified-live vaccine differentially influences the immune phenotype of beef calves, with three doses of modified live inducing potentially immune homeostasis and a combination of modified live and inactivated vaccines inducing a skewed immune phenotype. However, more research is needed to determine the protective efficacy of these vaccination protocols against disease

    Genetic relationships among temperament, immune function, and carcass merit

    Get PDF
    Cattle producers historically have selected for docile temperaments simply for management convenience because calmer animals are conducive to safe environments for their peers as well as their handlers. As many producers would acknowledge, there seems to be a relationship between temperament and health, and calmer cattle tend to frequent the working chute for treatment of disease less often. Positive correlations have been found in cattle between temperament traits (chute scores, pen scores, and chute exit velocities) and cortisol concentration in the blood, suggesting that more excitable cattle are easily stressed (Curley et al., 2006; Cooke et al., 2009). In addition, Curley et al. (2007) found that easily excitable animals sustain elevated cortisol concentrations for a longer duration and had greater pituitary and adrenal responses following a stressor than calm cattle. Temperamental cattle have significantly higher mean temperament responses at all points (Oliphint, 2006). Higher basal serum cortisol concentrations may suggest that easily excitable cattle are chronically stressed (Curley et al., 2007), possibly resulting in a compromised immune system, illness, and decreased fat and protein deposition. Common measures of cattle temperament are pen scores, chute scores, and exit velocities. Temperament appears to be moderately heritable, with estimates ranging from 0.15 to 0.44 (Burrow and Corbet, 2000; Kadel et al., 2006; Schrode and Hammack, 1971; Stricklin et al., 1980; Fordyce et al., 1988). If genetic correlations are found between temperament and production traits or immunological factors, they may aid cattle breeders in producing profitable cattle. Such relationships have been found between exit velocity and hot carcass weight (r = -0.54), exit velocity and marbling score (r = 0.10), exit velocity and yield grade (r = -0.22) (Nkrumah et al., 2007), and post-weaning weight gain and exit velocity (Weaber et al., 2006). Bovine respiratory disease (BRD) susceptibility has been estimated to be lowly heritable (Muggli-Cockett et al., 1992; Snowder et al., 2005, 2006, 2007; Schneider et al., 2008). This study was conducted to further investigate the genetic relationships between cattle temperament measured by chute score and exit velocity, immunological factors, and a range of economically relevant performance traits

    Group Space Allowance Has Little Effect on Sow Health, Productivity, or Welfare in a Free-Access Stall System

    Get PDF
    Free-access stalls allow sows to choose the protection of a stall or use of a shared group space. This study investigated the effect of group space width, 0.91 (SS), 2.13 (IS), and 3.05 (LS) m, on the health, production, behavior, and welfare of gestating sows. Nine replications of 21 (N = 189) gestating sows were used. At gestational d 35.4 ± 2.3, the pregnant sows were distributed into 3 pens of 7 sows, where they remained until 104.6 ± 3.5 d. Each treatment pen had 7 free-access stalls and a group space that together provided 1.93 (SS), 2.68 (IS), or 3.24 (LS) m2/sow. Baseline measurements were obtained before mixing. Back fat depth, BW, BCS, and lameness were measured monthly, and skin lesions were scored weekly. Blood was collected monthly for hematological, immunological, and cortisol analyses. Sow behavior was video recorded continuously during the initial 4 d of treatment and 24 h every other week thereafter. Behavior was analyzed for location, posture, pen investigation, social contact, and aggression. Skin response to the mitogen concanavalin A (Con A) was tested at mean gestational d 106. Litter characteristics including size and weight were collected at birth and weaning. The data were analyzed using a mixed model. Multiple comparisons were adjusted with the Tukey-Kramer and Bejamini-Hochberg methods. Group space allowance had no effect on any measure of sow health, physiology, or production (P ≥ 0.10). Sows in the SS, IS, and LS pens spent 77.88% ± 3.88%, 66.02% ± 3.87%, and 63.64% ± 3.91%, respectively, of their time in the free-access stalls (P = 0.12). However, SS sows used the group space less than IS and LS sows (P = 0.01). Overall, pen investigatory behavior was not affected by group space allowance (P = 0.91). Sows in the LS pens spent more time in a social group than SS sows (P = 0.02), whereas sows in IS pens were intermediate to, but not different from, the other treatments (P ≥ 0.10). The size of the social groups was also affected by the group space allowance (P = 0.03), with SS sows forming smaller groups than LS sows; again, IS sows were intermediate to, but not different from, the other treatments. Although the group space allowance had no measurable impact on the health, physiology, or productivity of the sows, the lower group space use and social contact of the SS sows reduced the behavioral diversity benefits of group housing and may indicate an avoidance of social stressors or a lack of physical comfort in the smallest pens

    Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers

    Get PDF
    Citation: Cockrum, R. R., Speidel, S. E., Salak-Johnson, J. L., Chase, C. C. L., Peel, R. K., Weaber, R. L., . . . Enns, R. M. (2016). Genetic parameters estimated at receiving for circulating cortisol, immunoglobulin G, interleukin 8, and incidence of bovine respiratory disease in feedlot beef steers. Journal of Animal Science, 94(7), 2770-2778. doi:10.2527/jas2015-0222Bovine respiratory disease complex (i.e., shipping fever and bacterial bronchopneumonia) is a multifaceted respiratory illness influenced by numerous environmental factors and microorganisms. Bovine respiratory disease (BRD) is just one component of BRD complex. Because BRD is moderately heritable, it may be possible to reduce the incidence of BRD through genetic selection. The objectives of this study were to determine the heritability and associative genetic relationships among immune system traits (i.e., cortisol, total IgG, IgG isotypes, and IL-8) in cattle monitored for BRD incidence. At an average of 83 d after weaning (219 d age and mean = 221.7 kg [SD 4.34]), crossbred Bos taurus steer calves (n = 2,869) were received at a commercial feedlot in southeastern Colorado over a 2-yr period. At receiving, jugular blood samples were collected at 212 (yr 1) and 226 d (yr 2) of age for immune trait analyses. The BRD phenotype was defined as a binomial variable (0 = no and 1 = yes) and compared with immune system traits measured at receiving (prior to illness onset). An animal identified as BRD positive exhibited ? 2 clinical signs (i.e., eye or nasal discharge, cough, lethargy, rapid breathing, acute interstitial pneumonia, or acute upper respiratory syndrome and/or a rectal temperature > 39.7°C). Heritability and genetic correlation estimates for categorical variable BRD, cortisol, IgG, IgG1, IgG2, and IL-8 were estimated from a sire model using ASREML. Heritability estimates were low to moderate for BRD (0.17 ± 0.08), cortisol (0.13 ± 0.05), IgG (0.15 ± 0.05), IgG1 (0.11 ± 0.05), IgG2 (0.24 ± 0.06), and IL-8 (0.30 ± 0.06). A moderate negative genetic correlation was determined between BRD and cortisol (rg = ?0.19 ± 0.32). Moderate positive correlations were found between BRD with IgG (0.42 ± 0.28), IgG1 (0.36 ± 0.32), and IL-8 (rg = 0.26 ± 0.26). Variation in the BRD phenotype and immune system traits suggested herd health improvement may be achieved through genetic selection. © 2016 American Society of Animal Science. All rights reserved

    Review: Transport Losses in Market Weight Pigs: I. A Review of Definitions, Incidence, and Economic Impact

    Get PDF
    Transport losses (dead and nonambulatory pigs) present animal welfare, legal, and economic challenges to the US swine industry. The objectives of this review are to explore 1) the historical perspective of transport losses; 2) the incidence and economic implications of transport losses; and 3) the symptoms and metabolic characteristics of fatigued pigs. In 1933 and 1934, the incidence of dead and nonambulatory pigs was reported to be 0.08 and 0.16%, respectively. More recently, 23 commercial field trials (n = 6,660,569 pigs) were summarized and the frequency of dead pigs, nonambulatory pigs, and total transport losses at the processing plant were 0.25, 0.44, and 0.69% respectively. In 2006, total economic losses associated with these transport losses were estimated to cost the US pork industry approximately $46 million. Furthermore, 0.37 and 0.05% of the nonambulatory pigs were classified as either fatigued (nonambulatory, noninjured) or injured, respectively, in 18 of these trials (n = 4,966,419 pigs). Fatigued pigs display signs of acute stress (open-mouth breathing, skin discoloration, muscle tremors) and are in a metabolic state of acidosis, characterized by low blood pH and high blood lactate concentrations; however, the majority of fatigued pigs will recover with rest. Transport losses are a multifactorial problem consisting of people, pig, facility design, management, transportation, processing plant, and environmental factors, and, because of these multiple factors, continued research efforts are needed to understand how each of the factors and the relationships among factors affect the well-being of the pig during the marketing process

    Dietary lysine-to-energy ratios for managing growth and pubertal development in replacement gilts

    Get PDF
    Objective: Our objective was to determine growth rates, body composition, and pubertal development of replacement gilts fed diets with different ratios of standardized ileal digestible (SID) lysine to ME. Materials and Methods: Diets with low, medium, and high ratios of SID lysine to ME (grower: 2.3, 2.6, and 2.8; and, finisher; 1.7, 1.9, and 2.1 g/Mcal) were fed from 100 to 200 d of age, after which gilts were moved from the gilt development unit to sow farms. Boar exposure and estrus detection began at 160 d of age and continued until first detected estrus. Estimates of BW and body composition were determined at 100, 142, 160, and 200 d of age and at puberty. Results and Discussion: Body weights and growth rates were reduced (P \u3c 0.05) as dietary SID lysine–to– ME ratio decreased. Greater SID lysine–to–ME ratios increased the number of gilts that exhibited estrus upon boar exposure, increased the number of gilts with a spontaneous first estrus, reduced the number of gilts requiring P.G.600 (Merck Animal Health, Kenilworth, NJ), and decreased age at first estrus (P \u3c 0.05). Slower growing gilts that weighed less with less backfat were more likely to require P.G.600 to induce puberty (P \u3c 0.05). Implications and Applications: Reducing SID lysine– to–ME ratios in gilt diets can increase the number of gilts within optimal BW range at first estrus, but overall pubertal development is delayed if ratios are reduced below 2.8 and 2.1 g of SID lysine to megacalorie of ME in grower and finisher diets, respectively
    corecore