123 research outputs found

    Adsorption of crystal violet on rice husk activated carbon

    Get PDF
    The need to develop effective technology for the treatment of liquid effluent of dye-intensive industries such as textile, rubber, paint, and printing is synonymous with the need to save the life-threatening risks posed by these carcinogenic and mutagenic pollutants on human and aquatic lives. Isotherms of adsorption of crystal violet (CV) on activated carbon (AC) synthesized from rice husk are presented herewith to elucidate the mechanism of the adsorption process of crystal violet dye contaminated water on rice husk activated carbon. AC was synthesized from rice husk via a phosphoric acid activating agent at low temperatures. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (DR) isotherm studies were employed. The mean square values for Langmuir, Freundlich, Temkin and D-R models were 0.98, 0.91, 0.94, and 0.63, respectively. Analysis of the isotherms of the adsorption of crystal violet sorbate on the synthesized rice husk sorbent suggested that the adsorption process proceeded via a homogeneous monolayer mechanism. Langmuir isotherm gave the best fit of the adsorption process. Langmuir isotherm constant was –1.40 l/mg, and the equilibrium adsorption capacity was 13.53 mg/g

    Isotherm study of crystal violet on activated carbon synthesized from millet stover

    Get PDF
    Continuous release of synthetic dyes from industrial effluent into surface water poses a huge environmental threat and health hazard to humans and aquatic life. The need to right the wrong occasioned by the inimical industrial practice of uncontrolled release of carcinogenic dyes into the surface water calls for research into effective treatment technologies for the treatment of dye-contaminated industrial effluent. The isotherm of Crystal Violet (CV) solution on activated carbon (AC) synthesized from millet stover was investigated and presented herein. Samples of AC were synthesized from millet stover at 120⁰C using phosphoric acid as the activating agent. Employing varying mix ratios of stover-to-phosphoric acid (1:0, 1:1, 1:2, 1:3, and 1:4), respective samples of AC were synthesized. The batch adsorption process of the various samples of the AC in 15 mg/l initial concentration of an aqueous solution of CV was carried out at varying times. The CV’s change in the sorbate’s concentration was monitored using a UV spectrophotometer. The optimum adsorption time was 240 min. The optimally synthesized activated carbon was the 1:2 sample having an equilibrium sorbent concentration of 0.74 mg/L and sorbate uptake of 95.1%. Langmuir, Freundlich and Temkin isotherm models were employed for the isotherm analysis. The R^2 values of the Langmuir, Freundlich and Temkin models were 0.99, 0.90, and 0.94, respectively. The isotherm constants for the Langmuir, Freundlich and Temkin models were –1.52 l/mg, –4.08, and 0.005 l/min, respectively. The Langmuir isotherm model best fitted the adsorption mechanism with a maximum equilibrium adsorption capacity of 14.0 mg/g

    Chemical and Physical Comparative Study of the Effect of Wet and Dry Beneficiation of Kankara Kaolin

    Get PDF
    Chemical and physical comparative effect of wet and dry beneficiation processes for purification of kaolin was studied. X-ray flourescence XRF and particle size analysis of kaolin clay before and after beneficiation were carried out. The Si/Al ratio of the raw kaolin which was 1.90 decreased by 1.6 and 17.9% after the wet and dry beneficiation processes respectively. The clay content of the raw clay which was 48 wt% was improved to 73 wt% after the dry beneficiation while the impurity content was reduced from 52 to 27wt%.http://dx.doi.org/10.4314/njt.v34i2.1

    Impact of Normothermic Preservation with Extracellular Type Solution Containing Trehalose on Rat Kidney Grafting from a Cardiac Death Donor

    Get PDF
    BACKGROUND: The aim of this study was to investigate factors that may improve the condition of a marginal kidney preserved with a normothermic solution following cardiac death (CD) in a model of rat kidney transplantation (RTx). METHODS: Post-euthanasia, Lewis (LEW) donor rats were left for 1 h in a 23°C room. These critical kidney grafts were preserved in University of Wisconsin (UW), lactate Ringer's (LR), or extracellular-trehalose-Kyoto (ETK) solution, followed by intracellular-trehalose-Kyoto (ITK) solution at 4, 23, or 37°C for another 1 h, and finally transplanted into bilaterally nephrectomized LEW recipient rats (n = 4-6). Grafts of rats surviving to day 14 after RTx were evaluated by histopathological examination. The energy activity of these marginal rat kidneys was measured by high-performance liquid chromatography (HPLC; n = 4 per group) and fluorescence intensity assay (n = 6 per group) after preservation with UW or ETK solutions at each temperature. Finally, the transplanted kidney was assessed by an in vivo luciferase imaging system (n = 2). RESULTS: Using the 1-h normothermic preservation of post-CD kidneys, five out of six recipients in the ETK group survived until 14 days, in contrast to zero out of six in the UW group (p<0.01). Preservation with ITK rather than ETK at 23°C tended to have an inferior effect on recipient survival (p = 0.12). Energy activities of the fresh donor kidneys decreased in a temperature-dependent manner, while those of post-CD kidneys remained at the lower level. ETK was superior to UW in protecting against edema of the post-CD kidneys at the higher temperature. Luminescence intensity of successful grafts recovered within 1 h, while the intensity of grafts of deceased recipients did not change at 1 h post-reperfusion. CONCLUSIONS: Normothermic storage with extracellular-type solution containing trehalose might prevent reperfusion injury due to temperature-dependent tissue edema

    Mouse Studies to Shape Clinical Trials for Mitochondrial Diseases: High Fat Diet in Harlequin Mice

    Get PDF
    BACKGROUND: Therapeutic options in human mitochondrial oxidative phosphorylation (OXPHOS) diseases have been poorly evaluated mostly because of the scarcity of cohorts and the inter-individual variability of disease progression. Thus, while a high fat diet (HFD) is often recommended, data regarding efficacy are limited. Our objectives were 1) to determine our ability to evaluate therapeutic options in the Harlequin OXPHOS complex I (CI)-deficient mice, in the context of a mitochondrial disease with human hallmarks and 2) to assess the effects of a HFD. METHODS AND FINDINGS: Before launching long and expensive animal studies, we showed that palmitate afforded long-term death-protection in 3 CI-mutant human fibroblasts cell lines. We next demonstrated that using the Harlequin mouse, it was possible to draw solid conclusions on the efficacy of a 5-month-HFD on neurodegenerative symptoms. Moreover, we could identify a group of highly responsive animals, echoing the high variability of the disease progression in Harlequin mice. CONCLUSIONS: These results suggest that a reduced number of patients with identical genetic disease should be sufficient to reach firm conclusions as far as the potential existence of responders and non responders is recognized. They also positively prefigure HFD-trials in OXPHOS-deficient patients

    Anthropomorphic Measurements That Include Central Fat Distribution Are More Closely Related with Key Risk Factors than BMI in CKD Stage 3

    Get PDF
    Background: Body Mass Index (BMI) as a marker of obesity is an established risk factor for chronic kidney disease (CKD) and cardiovascular disease (CVD). However, BMI can overestimate obesity. Anthropomorphic measurements that include central fat deposition are emerging as a more important risk factor. We studied BMI, waist circumference (WC), waist-to-height ratio (WHtR), waist-to-hip ratio (WHR) and conicity index (CI) in a cohort of patients with CKD stage 3 and compared the associations with other known risk factors for CKD progression and CVD. Methods: 1740 patients with CKD stage 3 were recruited from primary care for the Renal Risk in Derby study. Each participant underwent clinical assessment, including anthropomorphic measurements and pulse wave velocity (PWV), as well as urine and serum biochemistry tests. Results: The mean age of the cohort was 72.969 years with 60 % females. The mean eGFR was 52.5610.4 ml/min/1.73 m 2 and 16.9 % of the cohort had diabetes. With the cohort divided into normal and increased risk of morbidity and mortality using each anthropomorphic measurement, those measurements that included increased central fat distribution were significantly associated with more risk factors for CKD progression and CVD than increased BMI. Univariable analysis demonstrated central fat distribution was correlated with more risk factors than BMI. Subgroup analyses using recognised BMI cut-offs to define obesity and quartiles of WHR and CI demonstrated that increasing central fat distribution wa

    Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency

    Get PDF
    Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the reactive oxygen species (ROS) hydrogen peroxide (H2O2) induces KSHV reactivation from latency through both autocrine and paracrine signaling. Furthermore, KSHV spontaneous lytic replication, and KSHV reactivation from latency induced by oxidative stress, hypoxia, and proinflammatory and proangiogenic cytokines are mediated by H2O2. Mechanistically, H2O2 induction of KSHV reactivation depends on the activation of mitogen-activated protein kinase ERK1/2, JNK, and p38 pathways. Significantly, H2O2 scavengers N-acetyl-L-cysteine (NAC), catalase and glutathione inhibit KSHV lytic replication in culture. In a mouse model of KSHV-induced lymphoma, NAC effectively inhibits KSHV lytic replication and significantly prolongs the lifespan of the mice. These results directly relate KSHV reactivation to oxidative stress and inflammation, which are physiological hallmarks of KS patients. The discovery of this novel mechanism of KSHV reactivation indicates that antioxidants and anti-inflammation drugs could be promising preventive and therapeutic agents for effectively targeting KSHV replication and KSHV-related malignancies
    corecore