75 research outputs found

    Glutamate Cotransmission in Cholinergic, GABAergic and Monoamine Systems: Contrasts and Commonalities

    Get PDF
    Multiple discoveries made since the identification of vesicular glutamate transporters (VGLUTs) two decades ago revealed that many neuronal populations in the brain use glutamate in addition to their “primary” neurotransmitter. Such a mode of cotransmission has been detected in dopamine (DA), acetylcholine (ACh), serotonin (5-HT), norepinephrine (NE) and surprisingly even in GABA neurons. Interestingly, work performed by multiple groups during the past decade suggests that the use of glutamate as a cotransmitter takes different forms in these different populations of neurons. In the present review, we will provide an overview of glutamate cotransmission in these different classes of neurons, highlighting puzzling differences in: (1) the proportion of such neurons expressing a VGLUT in different brain regions and at different stages of development; (2) the sub-cellular localization of the VGLUT; (3) the localization of the VGLUT in relation to the neurons’ other vesicular transporter; and (4) the functional role of glutamate cotransmission

    Recording neuronal activity using miniscopes

    Get PDF
    Our overarching goal is to understand how the striatum can select between competing options to favor goal-directed behaviors or the establishment of habitual control. This will provide fundamental and transformational insights into the regulation of cognitive functions by co-transmission.https://ir.lib.uwo.ca/brainscanprojectsummaries/1010/thumbnail.jp

    Endocytosis of Activated Muscarinic m2 Receptor (m2R) in Live Mouse Hippocampal Neurons Occurs via a Clathrin-Dependent Pathway

    Get PDF
    Our aim was to examine the dynamics of the muscarinic m2 receptor (m2R), a G-protein coupled receptor (GPCR), after agonist activation in living hippocampal neurons, and especially clathrin dependency endocytosis. We have previously shown that the m2R undergoes agonist-induced internalization in vivo. However, the nature of the endocytotic pathway used by m2R after activation is still unknown in living neurons. Using live cell imaging and quantitative analyses, we have monitored the effect of stimulation on the fate of the membrane-bound m2R and on its redistribution in intraneuronal compartments. Shortly (6 min) after activation, m2R is internalized into clathrin immunopositive structures. Furthermore, after clathrin-dependent endocytosis, m2R associates with early and late endosomes and with subcellular organelles involved in degradation. Together, these results provide, for the first time, a description of m2R trafficking in living neurons and prove that m2R undergoes clathrin-dependent endocytosis before being degraded

    Fluoxetine treatment abolishes the in vitro respiratory response to acidosis in neonatal mice

    Get PDF
    International audienceBACKGROUND: To secure pH homeostasis, the central respiratory network must permanently adapt its rhythmic motor drive to environment and behaviour. In neonates, it is commonly admitted that the retrotrapezoid/parafacial respiratory group of neurons of the ventral medulla plays the primary role in the respiratory response to acidosis, although the serotonergic system may also contribute to this response.METHODOLOGY/PRINCIPAL FINDINGS: Using en bloc medullary preparations from neonatal mice, we have shown for the first time that the respiratory response to acidosis is abolished after pre-treatment with the serotonin-transporter blocker fluoxetine (25-50 ”M, 20 min), a commonly used antidepressant. Using mRNA in situ hybridization and immunohistology, we have also shown the expression of the serotonin transporter mRNA and serotonin-containing neurons in the vicinity of the RTN/pFRG of neonatal mice.CONCLUSIONS: These results reveal that the serotonergic system plays a pivotal role in pH homeostasis. Although obtained in vitro in neonatal mice, they suggest that drugs targeting the serotonergic system should be used with caution in infants, pregnant women and breastfeeding mothers

    Functional dissociation of behavioral effects from acetylcholine and glutamate released from cholinergic striatal interneurons

    Get PDF
    In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward-based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co-transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue-based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward-evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors

    Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease.

    Get PDF
    International audienceSeveral lines of evidence suggest that the glutamatergic system is severely impaired in Alzheimer disease (AD). Here, we assessed the status of glutamatergic terminals in AD using the first available specific markers, the vesicular glutamate transporters VGLUT1 and VGLUT2. We quantified VGLUT1 and VGLUT2 in the prefrontal dorsolateral cortex (Brodmann area 9) of controls and AD patients using specific antiserums. A dramatic decrease in VGLUT1 and VGLUT2 was observed in AD using Western blot. Similar decreases were observed in an independent group of subjects using immunoautoradiography. The VGLUT1 reduction was highly correlated with the degree of cognitive impairment, assessed with the clinical dementia rating (CDR) score. A significant albeit weaker correlation was also observed with VGLUT2. These findings provide evidence indicating that glutamatergic systems are severely impaired in the A9 region of AD patients and that this impairment is strongly correlated with the progression of cognitive decline. Our results suggest that VGLUT1 expression in the prefrontal cortex could be used as a valuable neurochemical marker of dementia in AD

    Effects of Social Defeat Stress on Sleep in Mice

    No full text
    Stress plays a key role in the development of psychiatric disorders and has a negative impact on sleep integrity. In mice, chronic social defeat stress (CSDS) is an ethologically valid model of stress-related disorders but little is known about its effects on sleep regulation. Here, we investigated the immediate and long-term effects of 10 consecutive days of social defeat (SD) on vigilance states in C57Bl/6J male mice. Social behavior was assessed to identify susceptible mice, i.e., mice that develop long-lasting social avoidance, and unsusceptible mice. Sleep-wake stages in mice of both groups were analyzed by means of polysomnographic recordings at baseline, after the first, third, and tenth stress sessions and on the 5th recovery day (R5) following the 10-day CSDS. In susceptible mice, each SD session produced biphasic changes in sleep-wake states that were preserved all along 10-day CSDS. These sessions elicited a short-term enhancement of wake time while rapid eye-movement (REM) sleep was strongly inhibited. Concomitantly, delta power was increased during non REM (NREM) sleep. During the following dark period, an increase in total sleep time, as well as wake fragmentation, were observed after each analyzed SD session. Similar changes were observed in unsusceptible mice. At R5, elevated high-frequency EEG activity, as observed in insomniacs, emerged during NREM sleep in both susceptible and unsusceptible groups suggesting that CSDS impaired sleep quality. Furthermore, susceptible but not unsusceptible mice displayed stress-anticipatory arousal during recovery, a common feature of anxiety disorders. Altogether, our findings show that CSDS has profound impacts on vigilance states and further support that sleep is tightly regulated by exposure to stressful events. They also revealed that susceptibility to chronic psychological stress is associated with heightened arousal, a physiological feature of stress vulnerability

    Les transporteurs vésiculaires du glutamate, VGLUT1 et VGLUT2, dans les maladies de Parkinson et d'Alzheimer

    No full text
    Le glutamate est le neurotransmetteur excitateur majeur du systĂšme nerveux central (SNC). Nombreuses donnĂ©es suggĂšrent l'implication du glutamate dans diffĂ©rentes maladies neurologiques ou psychiatriques. Cependant, malgrĂ© son rĂŽle majeur, la recherche sur la neurotransmission glutamatergique a Ă©tĂ© longtemps ralentie par l'absence de marqueurs spĂ©cifiques de ces neurones. VGLUTs sont des marqueurs absolument spĂ©cifiques de la transmission glutamatergique. Cette Ă©tude a dĂ©montrĂ© des perturbations majeures de VGLUT1 et VGLUT2 au cortex prĂ©frontal des patients atteinte de la maladie de parkinsons et d'Alzheimer ainsi que au striatum des sujets parkinsoniens. Si on souhaite restaurer les fonctions motrices et cognitives chez ces patients, ces donnĂ©es devront ĂȘtre prises en compte pour les traitements futurs de ces deux maladies.PARIS12-CRETEIL BU Multidisc. (940282102) / SudocSudocFranceF
    • 

    corecore