17 research outputs found

    ИсслСдованиС Ρ€Π°Π±ΠΎΡ‚Ρ‹ стСклопластиковых ΠΊΡ€Π΅ΠΏΠ΅ΠΆΠ½Ρ‹Ρ… элСмСнтов Π² стСновых конструкциях

    Full text link
    The article is devoted to the study of pull-out tests of fiberglass plastic dowels installed in the walls made of lightweight concrete. The authors have undertaken experimental tests of anchors in use on the construction site and conducted analysis of test results.Π Π°Π±ΠΎΡ‚Π° посвящСна исслСдованию характСристик сцСплСния ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π½Ρ‹Ρ… стСклопластиковых дюбСлСй с Π»Π΅Π³ΠΊΠΈΠΌ Π±Π΅Ρ‚ΠΎΠ½ΠΎΠΌ. Авторами ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ испытания Π°Π½ΠΊΠ΅Ρ€ΠΎΠ² Π² Π½Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… условияx Π½Π° ΡΡ‚Ρ€ΠΎΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΊΠ΅ ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ Π°Π½Π°Π»ΠΈΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² испытаний

    Influence of abrasive materials on the quality of analytical surfaces during preparation of samples for spectral analysis

    Get PDF
    РассматриваСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ загрязнСния повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² стали Π°Π±Ρ€Π°Π·ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°ΠΌΠΈ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΏΡ€ΠΎΠ± для опрСдСлСния химичСского состава Π½Π° ΠΎΠΏΡ‚ΠΈΠΊΠΎ-эмиссионных спСктромСтрах [1]. Π’ стандартах Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ описаны способы ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ повСрхности, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹, трСбования ΠΊ качСству Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ повСрхности. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΌΠΎΠΆΠ½ΠΎ Ρ„Ρ€Π΅Π·Π΅Ρ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ»ΠΈ ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Ρ‚ΡŒ с использованиСм Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π°Π±Ρ€Π°Π·ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ². Π’ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ аналитичСского обСспСчСния Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ заводской Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€ΠΈΠΈ ОАО Β«Π‘ΠœΠ—Β» Π²Ρ‹ΡΡΠ½ΠΈΠ»ΠΎΡΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² Π² процСссС ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ± загрязняСтся алюминиСм ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅ΠΌ. Для Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ происходит загрязнСниС аналитичСских повСрхностСй, Π±Ρ‹Π» ΠΈΠ·ΡƒΡ‡Π΅Π½ Ρ…ΠΈ- мичСский состав всСх ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΏΡ€ΠΎΠ±, ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ экспСримСнт, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†Π°, Π½Π΅ приводящий ΠΊ Π·Π°Π³Ρ€ΡΠ·Π½Π΅Π½ΠΈΡŽ повСрхности алюминиСм ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅ΠΌ. Для экспСримСнта Π±Ρ‹Π»ΠΈ ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Ρ‹ Ρ‚Ρ€ΠΈ стандартных ΠΎΠ±Ρ€Π°Π·Ρ†Π° состава стали с аттСстованными значСниями массовой Π΄ΠΎΠ»ΠΈ алюминия ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² Ρ€Π°Π·Π½Ρ‹Ρ… Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°Ρ…. ΠŸΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π° ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° трСмя способами ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ ΠΎΠΏΡ‚ΠΈΠΊΠΎ-эмиссионный ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΉ аналитичСской повСрхности Π² пяти Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… для установлСния значСния массовой Π΄ΠΎΠ»ΠΈ алюминия ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈ ΠΎΡ†Π΅Π½ΠΊΠΈ разброса ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² (ОБКО). Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… испытаний Π±Ρ‹Π»ΠΎ установлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π½ΠΈΠΈ повСрхности ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π°Π±Ρ€Π°Π·ΠΈΠ²Π½Ρ‹Ρ… ΠΊΡ€ΡƒΠ³ΠΎΠ² ΠΈΠ· Π±Π΅Π»ΠΎΠ³ΠΎ ΠΊΠΎΡ€ΡƒΠ½Π΄Π° ΠΈ ΡˆΠ»ΠΈΡ„ΠΎΠ²Π°Π»ΡŒΠ½ΠΎΠΉ Π±ΡƒΠΌΠ°Π³ΠΈ нСводостойкой Π·Π΅Ρ€Π½ΠΈΡΡ‚ΠΎΡΡ‚ΡŒΡŽ Π 40 происходит загрязнСниС повСрхности Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠ³ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Π° алюминиСм ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅ΠΌ, поэтому ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ массовой Π΄ΠΎΠ»ΠΈ алюминия ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π² стали Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ для ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ повСрхности ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ фрСзСрования

    Local Affinity Based Inversion of Filter Generators

    Get PDF
    We propose a novel efficient cryptanalytic technique allowing an adversary to recover an initial state of filter generator given its output sequence. The technique is applicable to filter generators possessing local affinity property

    ΠœΠ•Π’ΠžΠ”Π« Π‘Π˜ΠΠ’Π•Π—Π ΠΠ›Π“Π•Π‘Π ΠΠ˜Π§Π•Π‘ΠšΠžΠ™ ΠΠžΠ ΠœΠΠ›Π¬ΠΠžΠ™ ЀОРМЫ Π€Π£ΠΠšΠ¦Π˜Π™ ΠœΠΠžΠ“ΠžΠ—ΠΠΠ§ΠΠžΠ™ Π›ΠžΠ“Π˜ΠšΠ˜

    Get PDF
    The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.Π‘Ρ‚Ρ€Π΅ΠΌΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² помСхоустойчивого кодирования, ΠΊΡ€ΠΈΠΏΡ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ, Ρ‚Π΅ΠΎΡ€ΠΈΠΈ синтСза сигналов, основанных Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ, Π΄ΠΈΠΊΡ‚ΡƒΡŽΡ‚ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ изучСния Ρ„ΠΎΡ€ΠΌ прСдставлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ. Π’ частности, для Π±ΡƒΠ»Π΅Π²Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ распространСниС ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π° алгСбраичСская Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΠ°, извСстная Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌ Π–Π΅Π³Π°Π»ΠΊΠΈΠ½Π°, которая Ρ…ΠΎΡ€ΠΎΡˆΠΎ описываСт ΠΌΠ½ΠΎΠ³ΠΈΠ΅ криптографичСскиС свойства Π±ΡƒΠ»Π΅Π²Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ. Π’ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠ΅ формализуСтся понятиС алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ синтСза алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ 3-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈ 5-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ ΠΏΠΎ Π°Π½Π°Π»ΠΎΠ³ΠΈΠΈ с ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π ΠΈΠ΄Π°-ΠœΠ°Π»Π»Π΅Ρ€Π° для Π±ΡƒΠ»Π΅Π²Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ: Π½Π° основС Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½ΠΎ синтСзируСмых ΠΌΠ°Ρ‚Ρ€ΠΈΡ† прСобразования. Π’Ρ‹Π΄Π²ΠΈΠ½ΡƒΡ‚Π° Π³ΠΈΠΏΠΎΡ‚Π΅Π·Π°, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π°Ρ ΠΏΡ€Π°Π²ΠΈΠ»Π° синтСза ΠΌΠ°Ρ‚Ρ€ΠΈΡ† ΠΊΠ°ΠΊ для ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° ΠΎΡ‚ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹ истинности ΠΊ коэффициСнтам алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹, Ρ‚Π°ΠΊ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ прСобразования для любого, Π½Π°ΠΏΠ΅Ρ€Π΅Π΄ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ количСства ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ… 3-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π»ΠΈΠ±ΠΎ 5-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ‚Π°ΠΊΠΆΠ΅ Π²Π²Π΅Π΄Π΅Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ алгСбраичСской стСпСни нСлинСйности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ ΠΈ S-Π±Π»ΠΎΠΊΠ° подстановки, основанных Π½Π° ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ. Π’Π°ΠΊ, Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ синтСза алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ 3-Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ ΠΊ извСстной конструкции Ρ€Π΅ΠΊΡƒΡ€Ρ€Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ синтСза S-Π±Π»ΠΎΠΊΠΎΠ² Π΄Π»ΠΈΠ½Ρ‹ N = 3k, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρ‡Π΅Π³ΠΎ вычислСны ΠΈΡ… алгСбраичСскиС стСпСни нСлинСйности. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ ΡΡ‚Π°Ρ‚ΡŒ основой ΠΊΠ°ΠΊ для Π΄Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠΈΡ… тСорСтичСских исслСдований, Ρ‚Π°ΠΊ ΠΈ для практичСского примСнСния: Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½ΠΎΠ²Ρ‹Ρ… криптографичСских ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²ΠΎΠ², ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… ΠΊΠΎΠ΄ΠΎΠ², Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² сТатия ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ, ΡΠΈΠ³Π½Π°Π»ΡŒΠ½Ρ‹Ρ… конструкций, Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² Π±Π»ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΈ ΠΏΠΎΡ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΡˆΠΈΡ„Ρ€ΠΎΠ²Π°Π½ΠΈΡ, основанных Π½Π° пСрспСктивных ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ°Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ синтСза алгСбраичСской Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ·Π½Π°Ρ‡Π½ΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ основой для ΠΈΡ… ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ½ΠΎΠΉ ΠΈ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π½ΠΎΠΉ ΠΈΠΌΠΏΠ»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ

    Flax (Linum usitatissimum L.) Fibers for Composite Reinforcement: Exploring the Link Between Plant Growth, Cell Walls Development, and Fiber Properties

    Get PDF
    Due to the combination of high mechanical performances and plant-based origin, flax fibers are interesting reinforcement for environmentally friendly composite materials. An increasing amount of research articles and reviews focuses on the processing and properties of flax-based products, without taking into account the original key role of flax fibers, namely, reinforcement elements of the flax stem (Linum usitatissimum L.). The ontogeny of the plant, scattering of fiber properties along the plant, or the plant growth conditions are rarely considered. Conversely, exploring the development of flax fibers and parameters influencing the plant mechanical properties (at the whole plant or fiber scale) could be an interesting way to control and/or optimize fiber performances, and to a greater extent, flax fiber-based products. The first part of the present review synthesized the general knowledge about the growth stages of flax plants and the internal organization of the stem biological tissues. Additionally, key findings regarding the development of its fibers, from elongation to thickening, are reviewed to offer a piece of explanation of the uncommon morphological properties of flax fibers. Then, the slenderness of flax is illustrated by comparison of data given in scientific research on herbaceous plants and woody ones. In the second section, a state of the art of the varietal selection of several main industrial crops is given. This section includes the different selection criteria as well as an overview of their impact on plant characteristics. A particular interest is given to the lodging resistance and the understanding of this undesired phenomenon. The third section reviews the influence of the cultural conditions, including seedling rate and its relation with the wind in a plant canopy, as well as the impact of main tropisms (namely, thigmotropism, seismotropism, and gravitropism) on the stem and fiber characteristics. This section illustrates the mechanisms of plant adaptation, and how the environment can modify the plant biomechanical properties. Finally, this review asks botanists, breeders, and farmers’ knowledge toward the selection of potential flax varieties dedicated to composite applications, through optimized fiber performances. All along the paper, both fibers morphology and mechanical properties are discussed, in constant link with their use for composite materials reinforcement

    Connections between Quaternary and Binary Bent Functions

    Get PDF
    Boolean bent functions were introduced by Rothaus (1976) as combinatorial objects related to difference sets, and have since enjoyed a great popularity in symmetric cryptography and low correlation sequence design. In this paper direct links between Boolean bent functions, generalized Boolean bent functions (Schmidt, 2006) and quaternary bent functions (Kumar, Scholtz, Welch, 1985) are explored. We also study Gray images of bent functions and notions of generalized nonlinearity for functions that are relevant to generalized linear cryptanalysis

    ΠžΡ†Π΅Π½ΠΊΠ° влияния Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ сСктора ΠΈ нСпроизводствСнных сфСр Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ индСкса Π΄Π΅Π»ΠΎΠ²ΠΎΠΉ активности

    Get PDF
    The article is devoted to the impact assessment of the real sector and other factors of economic growth (characteristics of the financial sector, paid services and household incomes) on the dynamics of the business activity index, an integral indicator characterizing the state and trends of the country’s macroeconomic development. The purpose of the article is to justify the need and highlight the feasibility for developing new aggregated business activity indexes that include a wider range of the national economy areas than the output index of goods and services for the Rosstat basic business lines. The authors have used the design method for integral estimates of macroeconomic dynamics, regression analysis, and a probabilistic approach (the method of pairwise preferences) to determine the weighing coefficients of the basic indicators. The work has resulted in time series of business activity indices (in tables and graphs), based on the method proposed by the authors. The new index of business activity suggests a more objective assessment of the state and trends of socio-economic development compared to the same Rosstat index. This index can help to improve the macroeconomic forecasting efficiency and lay the groundwork for more grounded management decisions.Π‘Ρ‚Π°Ρ‚ΡŒΡ посвящСна ΠΎΡ†Π΅Π½ΠΊΠ΅ влияния ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ€Π΅Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ сСктора ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² экономичСского роста (характСристик финансового сСктора, сфСры ΠΏΠ»Π°Ρ‚Π½Ρ‹Ρ… услуг ΠΈ Π΄ΠΎΡ…ΠΎΠ΄ΠΎΠ² насСлСния) Π½Π° Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ индСкса Π΄Π΅Π»ΠΎΠ²ΠΎΠΉ активности β€” ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ показатСля, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ состояниС ΠΈ Ρ‚Ρ€Π΅Π½Π΄Ρ‹ макроэкономичСского развития страны. ЦСль ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ β€” ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ формирования Π½ΠΎΠ²Ρ‹Ρ… Π°Π³Ρ€Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… индСксов Π΄Π΅Π»ΠΎΠ²ΠΎΠΉ активности, ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ… Π±ΠΎΠ»Π΅Π΅ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ ΠΊΡ€ΡƒΠ³ сфСр Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ хозяйства ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с индСксами выпуска Ρ‚ΠΎΠ²Π°Ρ€ΠΎΠ² ΠΈ услуг ΠΏΠΎ Π±Π°Π·ΠΎΠ²Ρ‹ΠΌ Π²ΠΈΠ΄Π°ΠΌ экономичСской Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Росстата. Π’ исслСдовании ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния ΠΈΠ½Ρ‚Π΅Π³Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ†Π΅Π½ΠΎΠΊ макроэкономичСской Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΈ, рСгрСссионного Π°Π½Π°Π»ΠΈΠ·Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ вСроятностный ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ (ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΠΎΠΏΠ°Ρ€Π½Ρ‹Ρ… ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚Π΅Π½ΠΈΠΉ) для опрСдСлСния вСсовых коэффициСнтов Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠΌ Ρ€Π°Π±ΠΎΡ‚Ρ‹ стали динамичСскиС ряды индСксов Π΄Π΅Π»ΠΎΠ²ΠΎΠΉ активности (Π² Ρ‚Π°Π±Π»ΠΈΡ‡Π½ΠΎΠΉ ΠΈ графичСской Ρ„ΠΎΡ€ΠΌΠ°Ρ…), построСнныС Π½Π° основС Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π°Π²Ρ‚ΠΎΡ€Π°ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ Π½ΠΎΠ²Ρ‹ΠΉ индСкс Π΄Π΅Π»ΠΎΠ²ΠΎΠΉ активности позволяСт Π±ΠΎΠ»Π΅Π΅ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΈΠ²Π½ΠΎ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ состояниС ΠΈ Ρ‚Ρ€Π΅Π½Π΄Ρ‹ ΡΠΎΡ†ΠΈΠ°Π»ΡŒΠ½ΠΎ-экономичСского развития ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹ΠΌ индСксом Росстата, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡŽ эффСктивности макроэкономичСского прогнозирования ΠΈ созданию прСдпосылок для принятия Π±ΠΎΠ»Π΅Π΅ обоснованных управлСнчСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ

    Π’Π•ΠŸΠ›ΠžΠ’ΠΠ― Π­Π€Π€Π•ΠšΠ’Π˜Π’ΠΠžΠ‘Π’Π¬ Π’Π˜Π₯Π Π•Π’ΠžΠ™ Π˜ΠΠ’Π•ΠΠ‘Π˜Π€Π˜ΠšΠΠ¦Π˜Π˜ Π’Π•ΠŸΠ›ΠžΠžΠ’Π”ΠΠ§Π˜ Π“ΠΠ—ΠžΠ’ΠžΠ“Πž ПОВОКА ПРИ ΠŸΠ ΠžΠ”ΠžΠ›Π¬ΠΠžΠœ И ΠŸΠžΠŸΠ•Π Π•Π§ΠΠžΠœ ΠžΠ‘Π’Π•ΠšΠΠΠ˜Π˜ ΠšΠ Π£Π“Π›ΠžΠ’Π Π£Π‘ΠΠ«Π₯ ΠŸΠžΠ’Π•Π Π₯ΠΠžΠ‘Π’Π•Π™ Π§Π°ΡΡ‚ΡŒ 2

    Get PDF
    The paper demonstrates the fact that in valuating the actual heat efficiency from utilizing the vortical heat-release intensification it is necessary to account for the increase of heatreleasing area of the tube with the corresponding lacunae (hollows, lunules). It may vary from 4 to 280 % as a function of their geometrical parameters which causes heat-release increasing with its simultaneous growth from vortex formation in the boundary-layer flow by the swirls generated by lunule turbulizers. For the tube of axial flow-around with hollows applied on the outer surface the vortex intensification enhances the thermal effectiveness up to 1,39 times, and in the case of the transversal flow-around tube banks with lunuled tube outer surface it does not exceed 29 % at Re = 5000. With Re number growing to 14000 the energy effect tangibly declines to 6 %.The thermal effectiveness of the vortex intensification with spherical lunules on the tube inside surface and the air moving inside does not exceed 13 % in the interval Re = (1βˆ’2) β‹… 104 , which is distinctive for air the preheaters of steam-boilers. However, a greater energy effect (up to 33 %) for the axial flowing is attained from emerging saliences on the tube inside surface beneath the spherical lacunae on the outside. The authors establish that employing discrete roughness in the form of transverse circular saliences (diaphragms) allows attaining much greater heat-emission intensification (up to 70 %) in the interval of Re = (10βˆ’100) β‹… 103 as compared to the smooth tube. The paper shows that physical principles of the heat-emission vortex intensification by way of lunuling the round tubular surfaces differentiate from those applying artificial limited roughness in the form of pyramid frusta on the tube outside surfaces flowed around by the transverse flow. Показано, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ ΠΎΡ†Π΅Π½ΠΊΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ эффСктивности ΠΎΡ‚ примСнСния Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠΉ интСнсификации Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ повСрхности Ρ‚Ρ€ΡƒΠ±Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ углублСниями (Π²Ρ‹Π΅ΠΌΠΊΠ°ΠΌΠΈ, Π»ΡƒΠ½ΠΊΠ°ΠΌΠΈ), которая Π² зависимости ΠΎΡ‚ ΠΈΡ… гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ ΠΎΡ‚ 4 Π΄ΠΎ 280 %, Ρ‡Ρ‚ΠΎ Π²Ρ‹Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡ΠΈ с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌ ростом Π΅Π΅ ΠΎΡ‚ Ρ‚ΡƒΡ€Π±ΡƒΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΏΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π½ΠΎΠ³ΠΎ слоя ΠΏΠΎΡ‚ΠΎΠΊΠ° вихрями, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ Π»ΡƒΠ½ΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ‚ΡƒΡ€Π±ΡƒΠ»ΠΈΠ·Π°Ρ‚ΠΎΡ€Π°ΠΌΠΈ. Для ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎ ΠΎΠ±Ρ‚Π΅ΠΊΠ°Π΅ΠΌΠΎΠΉ Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΏΡ€ΠΈ нанСсСнии Π²Ρ‹Π΅ΠΌΠΎΠΊ Π½Π° Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΉ повСрхности вихрСвая интСнсификация ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²ΡƒΡŽ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄ΠΎ 1,39 Ρ€Π°Π·Π°, Π° Π² случаС ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎ ΠΎΠ±Ρ‚Π΅ΠΊΠ°Π΅ΠΌΡ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ ΠΏΡƒΡ‡ΠΊΠΎΠ² ΠΈΠ· ΠΎΠ±Π»ΡƒΠ½Π΅Π½Π½ΠΎΠΉ Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΉ повСрхности Ρ‚Ρ€ΡƒΠ± Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 29 % ΠΏΡ€ΠΈ Re = 5000. Π‘ ростом числа Re Π΄ΠΎ 14000 энСргСтичСский эффСкт ΠΎΡ‰ΡƒΡ‚ΠΈΠΌΠΎ сниТаСтся Π΄ΠΎ 6 %.ВСпловая ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠΉ интСнсификации сфСричСскими Π»ΡƒΠ½ΠΊΠ°ΠΌΠΈ Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² Π½Π΅ΠΉ Π²ΠΎΠ·Π΄ΡƒΡ…Π° Π½Π΅ ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ 13 % Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Re = (1βˆ’2) β‹… 104 , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π΅Π½ для Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΏΠΎΠ΄ΠΎΠ³Ρ€Π΅Π²Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΏΠ°Ρ€ΠΎΠ²Ρ‹Ρ… ΠΊΠΎΡ‚Π»ΠΎΠ². Однако больший энСргСтичСский эффСкт (Π΄ΠΎ 33 %) ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΡŒΠ½ΠΎΠΌ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΈ достигаСтся ΠΎΡ‚ ΠΏΠΎΡΠ²ΠΈΠ²ΡˆΠΈΡ…ΡΡ выпуклостСй Π½Π° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ‚Ρ€ΡƒΠ±Ρ‹ ΠΏΠΎΠ΄ сфСричСскими углублСниями Π½Π° Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΉ повСрхности. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ дискрСтной ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ Π² Π²ΠΈΠ΄Π΅ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Ρ… ΠΊΠΎΠ»ΡŒΡ†Π΅Π²Ρ‹Ρ… выпуклостСй (Π΄ΠΈΠ°Ρ„Ρ€Π°Π³ΠΌ) позволяСт Π΄ΠΎΡΡ‚ΠΈΡ‡ΡŒ интСнсификации Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ большСй (Π΄ΠΎ 70 %) Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Re = (10βˆ’100) β‹… 103 ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Π³Π»Π°Π΄ΠΊΠΎΠΉ Ρ‚Ρ€ΡƒΠ±ΠΎΠΉ. Показано, Ρ‡Ρ‚ΠΎ физичСскиС ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΡ‹ Π²ΠΈΡ…Ρ€Π΅Π²ΠΎΠΉ интСнсификации Ρ‚Π΅ΠΏΠ»ΠΎΠΎΡ‚Π΄Π°Ρ‡ΠΈ ΠΎΠ±Π»ΡƒΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΊΡ€ΡƒΠ³Π»ΠΎΡ‚Ρ€ΡƒΠ±Π½Ρ‹Ρ… повСрхностСй ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ ΠΎΡ‚ Ρ‚Π°ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈ нанСсСнии искусствСнной ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΡˆΠ΅Ρ€ΠΎΡ…ΠΎΠ²Π°Ρ‚ΠΎΡΡ‚ΠΈ Π² Π²ΠΈΠ΄Π΅ усСчСнных ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄ Π½Π° Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΉ повСрхности Ρ‚Ρ€ΡƒΠ±Ρ‹, ΠΎΠ±Ρ‚Π΅ΠΊΠ°Π΅ΠΌΠΎΠΉ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ ΠΏΠΎΡ‚ΠΎΠΊΠΎΠΌ.

    Influence of micropropagation on the ontogenetic phases of Paulownia

    Get PDF
    The aim of this research was to examine whether the method of micropropagation and tissue source affects the early growth and development of Paulownia in the first six months following transfer from tissue culture and establishment in soil. This tree species was chosen as it is a fast growing, short-rotation timber tree and able to adapt successfully to new environments. It is easily established in vitro and has been micropropagated using a range of different techniques. Three methods of micropropagation were chosen: callus regeneration, somatic embryogenesis and the third method was inducing root suckers in vitro. The third method was developed during this study and has never been documented in other research. Newly established explants and stabilised explants that had been in culture for over 6 months were used to test the efficacy of these methods. Genotype was also another important aspect to examine, as clones of the same species have shown differing response to being micropropagated. Previous studies have not compared different methods of micropropagation and rarely past the initial stages of laboratory experiments to fully determine the influence they have on the explants development ex vitro. Cultures were sourced from five clones (P1, P2, P3, P4, P5) of mature Paulownia elongata x fortunei stock plants. P1 was first established in vitro and had been micropropagated for five years to induce stabilisation. Newly established explants from clones P1, P2, P3, P4 and P5 had been established in culture for three months before being utilised for micropropagation analysis experiments. Examination of these methods in vitro showed that tissue sources from P1 were the easiest to manipulate and propagate in vitro. Callus regeneration was the most successful in its ability to produce explants and in large quantities. Initial callus experiments showed a significant response in shoot regeneration from stabilised cultures. Subsequent experiments showed a greater response from greenhouse material and newly established cultures, while stabilised cultures failed to produce shoots. Root sucker induction was also successful in stabilised and newly established clones of P1, however, it took a significant amount of time to induce root suckers and the quantity of material produced was limited. Somatic embryogenesis was unsuccessful in regenerating new shoots and the complexity of current methods made it difficult to develop a full protocol in this study. Explants produced from callus regeneration and root sucker induction were transferred to the greenhouse, along with controls from stabilised and newly established cultures. All sources readily produced adventitious roots and there was a 100% survival rate upon transfer to the greenhouse. While initial comparisons showed slight variations in growth factors such as height and floral development, these were not statistically significant. Any slight variation became indistinguishable after two months of growth. Most importantly, after six months, plants from all sources readily produced flowers, indicating that the explants retained the mature phenology of the parent material while being maintained in culture. While callus regeneration and root sucker induction were successful in producing new explants in vitro, these methods had no effect on the overall growth and development under greenhouse conditions. All explants exhibited early flowering, which indicates that they maintained the mature characteristics of the parent material. This is not necessarily an undesirable outcome if the intention is to micropropagate mature tissue while still retaining their mature phenology. Ultimately, the method of micropropagation utilised is determined by what growth characteristic is desired and the purpose for which the plants are being propagated
    corecore