МЕТОДЫ СИНТЕЗА АЛГЕБРАИЧЕСКОЙ НОРМАЛЬНОЙ ФОРМЫ ФУНКЦИЙ МНОГОЗНАЧНОЙ ЛОГИКИ

Abstract

The rapid development of methods of error-correcting coding, cryptography, and signal synthesis theory based on the principles of many-valued logic determines the need for a more detailed study of the forms of representation of functions of many-valued logic. In particular the algebraic normal form of Boolean functions, also known as Zhegalkin polynomial, that well describe many of the cryptographic properties of Boolean functions is widely used. In this article, we formalized the notion of algebraic normal form for many-valued logic functions. We developed a fast method of synthesis of algebraic normal form of 3-functions and 5-functions that work similarly to the Reed-Muller transform for Boolean functions: on the basis of recurrently synthesized transform matrices. We propose the hypothesis, which determines the rules of the synthesis of these matrices for the transformation from the truth table to the coefficients of the algebraic normal form and the inverse transform for any given number of variables of 3-functions or 5-functions. The article also introduces the definition of algebraic degree of nonlinearity of the functions of many-valued logic and the S-box, based on the principles of many-valued logic. Thus, the methods of synthesis of algebraic normal form of 3-functions applied to the known construction of recurrent synthesis of S-boxes of length N = 3k, whereby their algebraic degrees of nonlinearity are computed. The results could be the basis for further theoretical research and practical applications such as: the development of new cryptographic primitives, error-correcting codes, algorithms of data compression, signal structures, and algorithms of block and stream encryption, all based on the perspective principles of many-valued logic. In addition, the fast method of synthesis of algebraic normal form of many-valued logic functions is the basis for their software and hardware implementation.Стремительное развитие методов помехоустойчивого кодирования, криптографии, теории синтеза сигналов, основанных на принципах многозначной логики, диктуют необходимость более полного изучения форм представления функций многозначной логики. В частности, для булевых функций широкое распространение получила алгебраическая нормальная форма, известная также как полином Жегалкина, которая хорошо описывает многие криптографические свойства булевых функций. В настоящей статье формализуется понятие алгебраической нормальной формы функции многозначной логики. Предложены методы синтеза алгебраической нормальной формы 3-функций и 5-функций, которые работают по аналогии с преобразованием Рида-Маллера для булевых функций: на основе рекуррентно синтезируемых матриц преобразования. Выдвинута гипотеза, определяющая правила синтеза матриц как для перехода от таблицы истинности к коэффициентам алгебраической нормальной формы, так и обратного преобразования для любого, наперед заданного количества переменных 3-функции либо 5-функции. В статье также введено определение алгебраической степени нелинейности функций многозначной логики и S-блока подстановки, основанных на принципах многозначной логики. Так, разработанный метод синтеза алгебраической нормальной формы 3-функций применен к известной конструкции рекуррентного синтеза S-блоков длины N = 3k, в результате чего вычислены их алгебраические степени нелинейности. Полученные результаты могут стать основой как для дальнейших теоретических исследований, так и для практического применения: разработки новых криптографических примитивов, корректирующих кодов, алгоритмов сжатия информации, сигнальных конструкций, алгоритмов блочного и поточного шифрования, основанных на перспективных принципах многозначной логики. Кроме того, методы синтеза алгебраической нормальной формы функций многозначной логики являются основой для их программной и аппаратной имплементации

    Similar works