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Abstract

We propose a novel efficient cryptanalytic technique allowing an adversary to
recover an initial state of filter generator given its output sequence. The technique
is applicable to filter generators possessing local affinity property.
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1 Introduction

A filter generator is secure is there is no efficient algorithm to recover it’s unknown initial
state (the key) by given output sequence. The security is determined by cryptanalytic
properties of automaton mapping induced by filter generator. It is known investigations
of symmetric functions as filtering functions. But filter generator with symmetric function
has a property which we call “local affinity property” (l.a.p.).

We propose a novel efficient algorithm to recover the initial state for any filter generator
with “local affinity property”. Some classes of Boolean functions which correspond to filter
generators with local affinity property we distinguished too.
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2 Preliminaries

For any positive integer n let Vn = F2 be the linear space of all vectors x = (x0, . . . , xn−1)
T

over the finite field F2 = GF (2). The Hamming weight of a vector x ∈ Vn is the number
of its nonzero entries. We fixing the notation for two vectors in Vn:

0 = (0, 0, . . . , 0)T , 1 = (1, 1, . . . , 1)T

and notation for vectors of canonical basis of Vn

e0 = (1, 0, . . . , 0)T , . . . en−1 = (0, 0, . . . , 1)T .

Let ⊕ be an addition modulo 2 or bit-wise exclusive-or. For a vector x = (x0, . . . , xn−1)
and 0 6 i 6 n − 1, 0 6 j 6 n − i be definition put vector-fragment (x)i,j =

(xi, xi+1, . . . , xi+j−1)
T .

The Walsh Transform of f is an integer valued function Wf : Vn → [−2n, 2n] defined
by

Wf (u) =
∑
x∈Vn

(−1)f (x)⊕ 〈u,x〉

where 〈u,x〉 = u0x0 ⊕ . . . ⊕ un−1xn−1. The nonlinearity of Boolean function f can be
quantified through the Walsh Transform:

Nf = 2n−1 − 1

2
max
u∈Vn

|Wf (u)|

A Boolean function over Vn is a mapping Vn → F2. The set of all mappings from Vn
into Vm we denoting by Fn,m. Then for m = 1 we get Fn,1 = F , the set of all Boolean
functions on Vn. The value of a Boolean function f ∈ Fn on a vector x ∈ Vn we shell
denote by

f(x) = f (x0e0 ⊕ . . .⊕ xn−1en−1) = f (x0, . . . , xn−1) .

To describe an attack we need of two cryptographic primitives. First, we present the
filter generator based on a linear feedback shift register and on a filtering Boolean function.
Let LFSR(χ, f) (Figure 1) be the filter generator with a primitive connection polynomial
χ(λ) = λn ⊕ χ1λ

n−1 ⊕ . . .⊕ χn−1λ⊕ 1 (χ0 = χn = 1) and a filtering function f on Vn. A
linear feedback shift register produces a vector x = (x0, x1, . . . , xN+n−1), N 6 2n +n− 1,
satisfying the linear recurrence relation

xi = χ1xi−1 ⊕ . . .⊕ χn−1xi−(n−1) ⊕ χnxi−n, (2.1)

for i = n, n + 1, . . . , N + n − 2. The vector (x)i,n = (xi, . . . , xi+n−1)
T in Vn is called a

state of the filter generator. The first state (x)0,n = (x0, . . . , xn−1)
T is initially loaded into
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the filter generator. This state is called the initial state or initial vector. It is clear that
(x)i+1,n = U(x)i,n with

U =



0 1 . . . 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 1
1 χn−1 . . . χ1 1


.

Let y = (y0, . . . , yN−1)
T be an output vector of LFSR(χ, f) such that

yi = f(xi, . . . , xi+n−1) = f
(
U i(x0, . . . , xn − 1)T ,

)
, i = 0, 1, . . . , N − 1. (2.2)

Secondly, we present shift register with filtering function f on Vn denoted by SR(f)
(Figure 2).

If input vector of SR(f) is x = (x0, . . . , xN+n−2)
T with recurrence relation (2.1) then

SR(f) have output vector y = (y0, . . . , yN−1)
T of the form (2.2).
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For any positive integer N by definition, put

f ∗N(x) = f ∗N (x0, x1, . . . , xN+n−2) = (f(x0, . . . , xn−1), . . . , f(xm−1, . . . , xN+n−1))
T (2.3)

for any vector x = (x0, x1, . . . , xN+n−2)
T ∈ VN+n−1.

3 Local affinities of Boolean functions

Let A be a k×m - matrix over F2 with rankA = k, 1 6 k 6 m, and let B be l×(m+n−1)
- matrix over F2 with rankB = l, 1 6 l 6 m + n − 1. For vectors a ∈ Vm,b ∈ Vm+n−1

such that rank[A|a] = k, rank[B|b] = l we will denote A = (A, a and B = (B,b).

Definition 3.1. A couple A = (A, a) is called a local affinity of a span (m,m + n − 1)
and of a cardinality

(
2m−k, 2m+n−l−1

)
.

For any positive integers m,n let denote by Prop(m,n) the set of all local affinities of
a span (m,m+ n− 1).
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Definition 3.2. The Boolean function f in Fn is called the function with local affinity
(A,B) ∈ Prop(m,n) if for any x ∈ Vm+n−1,y ∈ Vm such that y = f ∗m(x) and Ay⊕ a = 0
the following condition holds: Bx⊕ b = 0.

4 General model of a local affinity based inversion

Suppose that a connection polynomial χ and a filtering function f with local affinity
(A,B) ∈ Prop(m,n) are public knowledge. Also suppose we know outside vector y =
(y0, . . . , yN−1)

T ∈ VN of a filter generator LFSR(χ, f). We concentrate on finding the
vector x = (x0, . . . , xN+n−1)

T ∈ VN+n−1 such that y = f ∗N(x) and the recurrence relation
(2.1) holds (i.e. the initial state of filter generator).

Recall that under recurrence relation (2.1) components xi, i = 0, 1, . . . , N + n − 1
of the vector x expressed as linear functions ξi, i = 0, 1, . . . , N + n − 1 in n variables
x0, x1, . . . , xn−1:

xi = ξi(x0, . . . , xn−1), i = 0, 1, . . . , N + n− 1. (4.1)

Let (y)s,m, s = 0, 1, . . . , N − m be the vector fragments of the vector y ∈ VN and
let (x)s,m+n−1, s = 0, 1, . . . , N −m be the vector fragments of vector x ∈ VN+n−1. Look
through consequently vector fragments (y)s,m, s = 0, 1, . . . , N−m and check A(y)s,m⊕a =
0. If this equation holds then under our assumptions of local affinity (A,B) of a function
f we have B(y)s,m+n−1 ⊕ b = 0. Last equation with condition (4.1) give us l linear
equations with respect of an initial state of LFSR(χ, f) (i.e. (x)0,n = (x0, . . . , xn−1)

T ).
Note that if m+n� N and 2k � N we can hope to cover initial uniquely by given linear
equations.

5 Examples of a local affinity based inversion

5A Majority functions ([1],[2])

Let n be an odd positive integer. Suppose that a filtering function f of LFSR(χ, f) is the
majority function defined as follows

f(x) =

{
0,wt(x) 6 n−1

2
;

1,wt(x) > n+1
2
.

(5.1)

The function (5.1) is a symmetric balanced function with Nf = 2n−1 −
(
n−1
n−1

2

)
and algebraic

immunity equals to dn
2
e = n+1

2
. Since Wf (e0) = . . . = Wf (en−1) =

(
n−1
n−1

2

)
, the function

(5.1) is not a resilient function.
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Now we describe some local affinities of functions defined by (5.1).

Lemma 5.1. Let n be an odd positive integer, m = 2, k = l = 2. Let f be the majority
function in Fn defined above. Then f have local affinities (A1,B1) such that

A1 = (A1, a1) =

((
1 0
0 1

)
,

(
0
1

))
,

B1 = (B1,b1) =

((
1 0 . . . 0 0
0 0 . . . 0 1

)
,

(
0
1

))
and (A2,B2) such that

A2 = (A2, a2) =

((
1 0
0 1

)
,

(
1
0

))
,

B2 = (B2,b2) =

((
1 0 . . . 0 0
0 0 . . . 0 1

)
,

(
1
0

))
Proof. Let for some vector fragment (y)i,2 of output vector y of SR(f) the equation
A1(y)i,2 = a1 holds. Then f(xi, . . . , xi+n−1) = 0, f(xi+1, . . . , xi+n) = 1. By (5.1) we
obtain

wt
(
(xi, . . . , xi+n−1)

T
)

= (n− 1)/2 (5.2)

and

wt
(
(xi+1, . . . , xi+n)T

)
= (n+ 1)/2. (5.3)

Combining (5.2), (5.3) we get xi = 0 and xi+n = 1, i.e. the equation B1(x)i,n+1 = b1

holds. In the same way we can proof the second assertion of this Lemma.

To evaluate an efficiency of an attack it is to be found of values of some parameters.
In particular we have to find a probability of an appearance of the event {yi 6= yi+1}. The
event {yi 6= yi+1} is called an alternation. The following assertions are needed for the
sequel.

Theorem 5.2. Let n be any odd positive integer. Let LFSR(χ, f) be a filter generator
with a primitive connection polynomial χ of degree n and filtering function f in Fn of the
form (5.1).

Then the appearance number of events {yi 6= yi+1} in output vector y =
(y0, . . . , y2n−2, y2n−1)

T , y0 = y2n−1 is equal to
(
n−1
n−1

2

)
.
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Proof. Note that under the condition of this Theorem for any output vector vector y′ =
(y′0, . . . , y

′
N−1)

T , N > 2n−1 we have y′i = y′i+2n−1, i = 0, 1, . . . , Nn
2 . Hence an output vector

y = (y0, . . . , y2n−2, y2n−1)
T , y0 = y2n−1 contains all possible alterations of LFSR(χ, f). The

proper input vector x = (x0, . . . , x2n+n−1)
T contains a vector fragment equals to v for each

v ∈ Vn {0}.
By definition, put

Vn,t = {x ∈ Vn | wt(x) = t} ,
t = 0, 1, . . . , n. Consider the partition of the above set of the form

Vn,t = V
(0)
n,t ∪ V

(1)
n,t ,

where V
(ε)
n,t = {x ∈ Vn | wt(x) = t, x1 = ε} , ε = 0, 1, t 6= 0, n. It is obvious that for

t 6= 0, n we have

#V
(0)
n,t =

(
n− 1

t

)
, #V

(1)
n,t =

(
n− 1

t− 1

)
.

The alternation (yi, yi+1)
T = (0, 1)T takes place at an output vector y of LFSR(χ, f) iff

(x)i,n = (xi, . . . , xi+n−1)
T ∈ V (0)

n,n−1
n

and
(x)i+1,n = (xi+1, . . . , xi+n)T ∈ Vn,n+1

n
,

i.e. xi+n = 1. The alternation (yi, yi+1)
T = (1, 0)T takes place in an output vector y of

LFSR(χ, f) iff

(x)i,n = (xi, . . . , xi+n−1)
T ∈ V (1)

n,n−1
n

and
(x)i+1,n = (xi+1, . . . , xi+n)T ∈ Vn,n−1

n
,

i.e. xi+n = 0.

Note that if v ∈ V (0)

n,n−1
n

then v ⊕ 1 ∈ V (1)

n,n+1
n

. By definition, put

On =
{

(v,v ⊕ 1) | v ∈ V (0)

n,n−1
n

}
.

Let a couple
(
(xi, . . . , xi+n−1)

T , (xj, . . . , xj+n−1)
T
)

be from On. For an above couple using
(2.1) we get

xi+n ⊕ xj+n = χ1xi+n−1 ⊕ . . .⊕ χn−1xi+1 ⊕ χnxi
⊕ χ1xj+n−1 ⊕ . . .⊕ χn−1xj+1 ⊕ χnxj = χ1 ⊕ . . .⊕ χn.
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Since a polynomial χ of degree n is primitive we have

xi+n ⊕ xj+n = 0.

This means that:

- if xi+n = xj+n = 1, then (x)i+1,n ∈ Vn,n+1
n

; (x)j+1,n ∈ Vn,n+1
n

, i.e. we have the

alternation (yi, yi+1)
T = (0, 1)T ;

- if xi+n = xj+n = 0, then (x)i+1,n ∈ Vn,n−1
n

; (x)j+1,n ∈ Vn,n−1
n

, i.e. we have the

alternation (yi, yi+1)
T = (1, 0)T .

Since only couple of the set On as fragments of input vector
x = (x0, x1, . . . , x2n−2, x2n−1, . . . , x2n+n−3) , x2n−1 = x0, . . . , x2n+n−3 = xn−1, gen-
erate alternations and takes place at the vector x once we get rn =

(
n−1
n−1

2

)
.

Let us assume that probability of alternation at output vector y is equals to
(
n−1
n−1

2

)
/(2n−

1). Each alternation generates two linear equations with respect to initial state bits. Then
the appearance of linear equation probability we can put pn = 2

(
n−1
n−1

2

)
/(2n − 1). By the

relation
(
2ν
ν

)
∼ 22ν/

√
πν ([3]) we get pn ∼

√
2

π(n−1)
.

Consider now the complexity of the method. Let as above y = (y0, . . . , yN−1)
T ∈ VN

be an output vector and let x = (x0, . . . , xN+n−2)
T ∈ VN+n−1 be a proper input vector of

LFSR(χ, f)
First step (precomputation). Each component xi, i = 0, 1, . . . , N + n− 2 of the input

vector x is a value of some linear function at Fn on the initial vector (x)0,n = v. These
functions are:

x0 = ξ0(v) = (e0,v) = (c0,v),

x1 = ξ1(v) = (e1,v) = (c1,v),

...

xn−1 = ξn−1(v) = (en−1,v) = (cn−1,v),

xn = ξn(v) = (en−1, Uv) = (UTen−1,v) = (cn,v),

xn+1 = ξn+1(v) = (en−1, U
2v) = ((U2)Ten−1,v) = (cn+1,x),

...

xn−1+j = ξn−1+j(v) = (en−1, U
jv) = ((U j)Ten−1,v) = (cn−1+j,x),

...

xN−1 = ξN−1(v) = (en−1, U
N−nv) = ((UN−n)Ten−1,v) = (cN−1,v).

(5.4)
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Relationship (5.4) mean that a running time of the first step is about O(Nn2), where
N = N(n).

Second step (generating of linear equations). The average number τ of linear equations
corresponding to alterations of output vector y is equals to

τ = τn(N) = pnN = 2N

(
n− 1
n−1

2

)/
(2n − 1). (5.5)

Let us consider such a system of linear equations

Bv = b, (5.6)

where

B =


b0 0 b0 1 . . . b0n−1

b1 0 b1 1 . . . b1n−1
...

...
. . .

...
bτ−1 0 bτ−1 1 . . . bτ−1n−1

 , (5.7)

v ∈ Vn,b ∈ Vn. It is clear, that rankB = rank[B|b] and the solution set of (5.5) includes
an unknown initial vector v = (x)0,n of LFSR(χ, f).

Now we introduce the following concept. Let entries bi j, i, j = 0, 1, . . . , n−1 of matrix
(5.6) be mutually independent random {0, 1} - variables with a common uniform distri-
bution. Denote the rank of a random matrix B as ρn(τ). In the sequel we shell deal with
a useful statement.

Theorem 5.3. ([4]) Let s and r be given integer numbers such that s > 0, s + r > 0. If
n→∞ and τ = n+ r, then

P {ρn(τ) = n− s} → 2−s(r+s)
∞∏

i=s+1

(
1− 1

2i

) r+s∏
i=1

(
1− 1

2i

)−1

,

where the last multiplier we put 1 when r + s = 0.

From Theorem 5.3 it follows that ρn(τ) has a threshold property:

(i) if τ/n→ α, 0 6 α < 1, then P {ρn(τ) = τ} → 1;

(ii) if τ/n→ α, α > 1, then P {ρn(τ) = n} → 1.
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Using (5.5) and Stirling’s formula ([3]) we get a behavior of τ/n as n→∞:

lim
n→∞

τ/n = lim
n→∞

2
(
n−1
n−1

2

)
N

(2n − 1)n
= lim

n→∞

2(n− 1)!N(
n−1

2

)
!
(
n−1

2

)
!n(2n − 1)

=

= lim
n→∞

2
√

2π(n− 1)(n− 1)n−1e−(n−1)N(√
2π
(
n−1

2

))2 ((
n−1

2

n−1
2

))2 (
e−

n−1
2

)2

n(2n − 1)

=

= lim
n→∞

2
√

2π(n− 1)N

π(n− 1)
(

1
2

)n−1
n(2n − 1)

= lim
n→∞

√
2

π

N

n3/2
(5.8)

From (5.8) it follows that we can get τ/n → α, α > 1 with N = O(n3/2). This means if
N = O(n3/2) and τ/n > 1 the equation ρτ (n) = n holds with probability close to 1 and
system (5.6) has a single solution. It will be v = (x)0,n, i.e. initial state of LFSR(χ, f).

Third step (converting initial state). To cover an initial state of LFSR(χ, f) we must
find a solution of system (5.6). It’s complexity is O(nw) where w = log2(7) ≈ 2.807
corresponds to Strassen’s exponent, which is the most efficient known method for Gaussian
eliminations.

Table 1 shows complexities of several steps of method. Thus the method presented

Complexity

1 step O(Nn2) = O(n7/2), N = O(n3/2)

2 step O(n3/2)
3 step O(nw)

Table 1.

above has polynomial complexity at about O(n7/2) with success probability close to 1.

5B Symmetric Boolean Functions ([5],[6])

Definition 5.4. A Boolean function f ∈ Fn is said to be symmetric if equations

f(x1, x2, x3, . . . , xn) = f(x2, x1, x3, . . . , xn) = f(x2, x3, . . . , xn, x1)

hold for any x = (x1, . . . , xn)T ∈ Vn
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Lemma 5.5. Let f be any different from constant symmetric Boolean function at Fn.
Let m = 2, k = 2, l = 1. Then f have local affinities (A′1,B

′
1) where

A′1 = (A′1, a
′
1) =

((
1 0
0 1

)
,

(
0

1

))
,

B′1 = (B′1,b
′
1) = ((1, 0, . . . , 0, 1), (1))

(5.9)

and (A′2,B
′
2) where

A′2 = (A′2, a
′
2) =

((
1 0
0 1

)
,

(
1

0

))
,

B′2 = (B′2,b
′
2) = ((1, 0, . . . , 0, 1), (1))

(5.10)

Proof. Suppose a fragment (y)i,2 of the output vector y satisfies equality A′1(y)i,2 = a′1,
i.e. (y)i,2 = (0, 1)T . Then f(xi, . . . , xi+n−1) = 0, f(xi+1, . . . , xi+n) = 1 where (x)i,n ∈
Vn,s, (x)i+1,n ∈ Vn,t and |s− t| = 1. It is clear that |s− t| = |xi − xi+n| = 1. Thus we get
xi 6= xi+n, i.e. xi⊕ xi+n = 1. Consequently B′1(x)i,n+1 = b′1. It can be shown in the same
that second assertion of the lemma holds.

Definition 5.6 ([5]). Let n be an odd positive integer and f ∈ Fn be a symmetric function.
We say that f is trivial balanced function if f(x⊕1) = f(1)⊕1 for any x = (x1, . . . , xn)T ∈
Vn.

Lemma 5.7. Let n = 2k+ 1, k > 0. Let LFSR(χ, f) be a filter generator with a primitive
connection polynomial χ of degree n and a symmetric primitive balanced filtering function
f at Fn.

Then the appearance number rn of events {yi 6= yi+1}in output vector y =
(y0, . . . , y2n−2, y2n−1)

T , y0 = y2n−1 satisfies the inequality

rn >

(
n− 1
n−1

2

)
.

Proof. The proof follows from Theorem 5.2.

Under the conditions of Lemma 5.7 we have

Pr {yi 6= yi+1} >

(
n− 1
n−1

2

)/
(2n − 1).

Since each alternation in this case generates only one linear equation the appearance of
linear equation probability satisfies the inequality

pn >

(
n− 1
n−1

2

)/
(2n − 1).
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5C Rotation symmetric functions ([7],[8], [9], [10])

Definition 5.8. Let n be positive integer and f ∈ Fn. We say that f is rotation symmetric
function if

f(x1, x2, . . . , xn) = f(x2, . . . , xn, x1)

for any x = (x1, . . . , xn)T ∈ Vn.

Note that every symmetric function is a rotation symmetric function.

Lemma 5.9. Let f be any different from constant rotation symmetric function at Fn.
Let m = 2, k = 2, l = 1. Then f have local affinities (A′1,B

′
1) and (A′2,B

′
2) of the form

(5.9), (5.10) accordingly.

Proof. It can be shown in the usual way that is in Lemma 5.5.

Lemma 5.10. Let n = 2k+1, k > 0. Let LFSR(χ, f) be a filter generator with a primitive
connection polynomial χ of degree n and a rotation symmetric primitive balanced filtering
function f at Fn.

Then the appearance number rn of events {yi 6= yi+1} in output vector y =
(y0, . . . , y2n−2, y2n−1)

T , y0 = y2n−1 satisfies the inequality

rn >

(
n− 1
n−1

2

)
.

Proof. The proof follows from Theorem 5.2.

5D “Minimal advantage” functions

Let n = 2p + 1. A filtering function f ∈ Fn of LFSR(χ, f) is said to be a “minimal
advantage” function if it satisfies conditions

f(x) = f(x1,x2) =

{
1,wt(x1) > wt(x2);

0,wt(x1) < wt(x2);
(5.11)

where x = (x1,x2) ∈ Vn,x1 = (x0, . . . , xp−1)
T ∈ Vp,x2 = (xp, . . . , xn−1)

T ∈ Vp+1.

Proposition 5.11. A Boolean function f of the form (5.11) is balanced.

Proof. The proof is by direct calculation.
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Lemma 5.12. Let n = 2p + 1,m = 2, k = 2, l = 1. The “minimal advantage” function
f ∈ Fn have local affinity (A′′,B′′), where

A′′ = (A′′, a′′) =

((
1 0
0 1

)
,

(
0

1

))
,

B′′ = (B′′, b′′) = (0, . . . , 0, 1, 0, . . . , 0), (1)) = (ep, (1)) .

Proof. Let y = (y0, . . . , ym−1)
T ∈ Vm be an output vector and x = (x0, . . . , xm+n−2)

T ∈
Vm+n−1 be a proper input vector of SR(f). Suppose that (y)i,2 = (0, 1)T for some i =
0, 1, . . . ,m+n−3. Then f(x0, . . . , xp−1, xp, . . . , xn−1) = 0 and f(x1, . . . , xp, xp+1, . . . , xn) =
1. By (5.11), it follows that

wt(x0, . . . , xp−1) < wt(xp, . . . , xn−1),

wt(x1, . . . , xp) > wt(xp+1, . . . , xn).
(5.12)

If xp = 0 it is such a chain of inequalities holds

wt((x1, . . . , xp)
T ) 6 wt((x0, . . . , xp−1)

T ) < wt((xp, . . . , xn−1)
T ) 6 wt((xp+1, . . . , xn)T ).

This contradiction of second inequality of (5.12) proves the Lemma.

5E Finite automata ([11], [12])

Problem of finite automata analysis often involve restoring a proper input sequence by
known output sequence ([13], [14], [15], [16], [17], [18], [19]). Obviously these problems
have cryptography aspects. In this subsection we present a class of Boolean functions
with local affinity property which permits to restore input sequences of an automaton
SR(f).

Let f ∈ func be a function linearly dependent of xn−1, i.e.

f(x0, . . . , xn−2, xn−1) = f ′(x0, . . . , xn−2)⊕ xn−1. (5.13)

By [19], it follows that f is a perfectly balanced function. Consequently #(f ∗m)−1(y) =
2n−1 for any m and for every y ∈ Vm. For an output vector y ∈ Vm of an automation
SR(f) denote by

My(f) =


x1

x2

...

x2n−1

 =


x1

0 x1
1 . . . x1

m+n−2

x2
0 x2

1 . . . x2
m+n−2

...
...

. . .
...

x2n−1

0 x2n−1

1 . . . x2n−1

m+n−2

 (5.14)
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— a 2n−1 × (m + n − 1)-matrix which contains proper input vectors x1, . . . , x2n−1 ∈
(f ∗m)−1(y) as rows. Consider a following set of Boolean functions.

Definition 5.13. By Dn denote a subset of Fn which contains only Boolean functions of
the form (5.13) with a property: for any f ∈ Dn where exists m = m(f) and y = y(f) ∈
Vm such that

x1
m = x2

m = . . . = x2n−1

m

x1
m+1 = x2

m+1 = . . . = x2n−1

m+1

...

x1
m+n−2 = x2

m+n−2 = . . . = x2n−1

m+n−2,

at (5.14).

It is clear that Boolean function f has local affinity property (A,B), where A =
(A, a),B = (B,b) with B = Ek,b = b(y) ∈ Vk. Note that k in this case is not bounded.

Example 5.14. Let n = 3 and f(x0, x1, x2) = x0x1⊕x2. Suppose that y0 = (0, 1, 0, 1)T ∈
V4 is an output vector of SR(f). Then

My0(f) =


0 0 0 1 0 1
1 0 0 1 0 1
0 1 0 1 0 1
1 1 1 0 0 1

 , (5.15)

By (5.15) so, that a function f have a local affinity property (A,B) where

A = (A, a) =
(
E4, (0, 1, 0, 1)T

)
,

B = (b,b) =
(
E2, (0, 1)T

)
.

Let m′ be any positive integer and let y′ be any vector at Vm′. Consider a vector (y0,y
′) ∈

Vm+m′ as an output vector of SR(f). It can be shown that f have a local affinity property
(A,B) where

A = (A, a) =
(
E4, (0, 1, 0, 1)T

)
,

B = (B,b) =
(
E2+m′ , ((0, 1),b(y′))T

)
,

b(y′) ∈ Vm′. In other words, if an output vector y ∈ VN of SR(f) such that (y)i,4 = y0,
then a fragment (x)i+4,N−i−2 of input vector x ∈ VN+2 we get uniquely.

14
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