599 research outputs found

    Is there a rational basis for cannabinoids research and development in ocular pain therapy? A systematic review of preclinical evidence

    Get PDF
    Background: Purpose of the present systematic review is to investigate preclinical evidence in favor of the working hypothesis of efficacy of cannabinoids in ocular pain treatment. Methods: Literature search includes the most relevant repositories for medical scientific literature from inception until November, 24 2021. Data collection and selection of retrieved records adhere to PRISMA criteria. Results: In agreement with a priori established protocol the search retrieved 2471 records leaving 479 results after duplicates removal. Eleven records result from title and abstract screening to meet the inclusion criteria; only 4 results are eligible for inclusion in the qualitative synthesis impeding meta-analysis. The qualitative analysis highlights the antinociceptive and anti-inflammatory efficacy of Δ8-tetrahydrocannabinol, cannabidiol and its derivative HU-308 and of new racemic CB1 allosteric ligand GAT211 and its enantiomers GAT228 and GAT229. Moreover, CB2R agonists RO6871304 and RO6871085 and CB2R ligand HU910 provide evidence of anti-inflammatory efficacy. CB2 agonist HU308 reduces of 241% uveitis-induced leukocyte adhesion and changes lipidome profile. Methodological and design issues raise concern of risk of bias and the amount of studies is too small for generalization. Furthermore, the ocular pain model used can resemble only inflammatory but not neuropathic pain. Conclusions: The role of the endocannabinoid system in ocular pain is underinvestigated, since only two studies assessing the effects of cannabinoid receptors modulators on pain behavior and other two on pain-related inflammatory processes are found. Preclinical studies investigating the efficacy of cannabinoids in ocular inflammatory and neuropathic pain models are needed to pave the way for clinical translation

    Co-design process for upskilling the workforce in the factories of the future

    Get PDF
    The digital transformation that the world is facing has a strong impact in the professional occupations and job profiles in the factories of the future context, requiring the need of upskilling and re-qualification of the workforce. Taking this into account, an Industrial Collaborative Educational Design (ICoED) is presented comprising three stages and eight steps, and considering a democratic and collaborative participation of the different stakeholders, namely the managers, educators and learners, each one providing its own perspective on the design of the training programme. In this co-design process, the analysis of the skills’ gap is a crucial task to prepare the initial stage of the process, particularly identifying the needs in terms of soft and hard skills. The proposed ICoED process was applied to solve an upskilling problem of an industrial metal stamping company, with the participants performing three workshops to execute the eight steps, reaching a training programme with five modules, each one settled with proper activities, resources and infrastructures.This work is part of the FIT4FoF project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement n. 820701.info:eu-repo/semantics/publishedVersio

    Roles of TRPV1 and neuropeptidergic receptors in dorsal root reflex-mediated neurogenic inflammation induced by intradermal injection of capsaicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute cutaneous neurogenic inflammation initiated by activation of transient receptor potential vanilloid-1 (TRPV<sub>1</sub>) receptors following intradermal injection of capsaicin is mediated mainly by dorsal root reflexes (DRRs). Inflammatory neuropeptides are suggested to be released from primary afferent nociceptors participating in inflammation. However, no direct evidence demonstrates that the release of inflammatory substances is due to the triggering of DRRs and how activation of TRPV<sub>1 </sub>receptors initiates neurogenic inflammation via triggering DRRs.</p> <p>Results</p> <p>Here we used pharmacological manipulations to analyze the roles of TRPV<sub>1 </sub>and neuropeptidergic receptors in the DRR-mediated neurogenic inflammation induced by intradermal injection of capsaicin. The degree of cutaneous inflammation in the hindpaw that followed capsaicin injection was assessed by measurements of local blood flow (vasodilation) and paw-thickness (edema) of the foot skin in anesthetized rats. Local injection of capsaicin, calcitonin gene-related peptide (CGRP) or substance P (SP) resulted in cutaneous vasodilation and edema. Removal of DRRs by either spinal dorsal rhizotomy or intrathecal administration of the GABA<sub>A </sub>receptor antagonist, bicuculline, reduced dramatically the capsaicin-induced vasodilation and edema. In contrast, CGRP- or SP-induced inflammation was not significantly affected after DRR removal. Dose-response analysis of the antagonistic effect of the TRPV<sub>1 </sub>receptor antagonist, capsazepine administered peripherally, shows that the capsaicin-evoked inflammation was inhibited in a dose-dependent manner, and nearly completely abolished by capsazepine at doses between 30–150 μg. In contrast, pretreatment of the periphery with different doses of CGRP<sub>8–37 </sub>(a CGRP receptor antagonist) or spantide I (a neurokinin 1 receptor antagonist) only reduced the inflammation. If both CGRP and NK<sub>1 </sub>receptors were blocked by co-administration of CGRP<sub>8–37 </sub>and spantide I, a stronger reduction in the capsaicin-initiated inflammation was produced.</p> <p>Conclusion</p> <p>Our data suggest that 1) the generation of DRRs is critical for driving the release of neuropeptides antidromically from primary afferent nociceptors; 2) activation of TRPV<sub>1 </sub>receptors in primary afferent nociceptors following intradermal capsaicin injection initiates this process; 3) the released CGRP and SP participate in neurogenic inflammation.</p

    Tunable Multifunctional Topological Insulators in Ternary Heusler Compounds

    Full text link
    Recently the Quantum Spin Hall effect (QSH) was theoretically predicted and experimentally realized in a quantum wells based on binary semiconductor HgTe[1-3]. QSH state and topological insulators are the new states of quantum matter interesting both for fundamental condensed matter physics and material science[1-11]. Many of Heusler compounds with C1b structure are ternary semiconductors which are structurally and electronically related to the binary semiconductors. The diversity of Heusler materials opens wide possibilities for tuning the band gap and setting the desired band inversion by choosing compounds with appropriate hybridization strength (by lattice parameter) and the magnitude of spin-orbit coupling (by the atomic charge). Based on the first-principle calculations we demonstrate that around fifty Heusler compounds show the band inversion similar to HgTe. The topological state in these zero-gap semiconductors can be created by applying strain or by designing an appropriate quantum well structure, similar to the case of HgTe. Many of these ternary zero-gap semiconductors (LnAuPb, LnPdBi, LnPtSb and LnPtBi) contain the rare earth element Ln which can realize additional properties ranging from superconductivity (e. g. LaPtBi[12]) to magnetism (e. g. GdPtBi[13]) and heavy-fermion behavior (e. g. YbPtBi[14]). These properties can open new research directions in realizing the quantized anomalous Hall effect and topological superconductors.Comment: 20 pages, 5 figure

    The NR4A subgroup: immediate early response genes with pleiotropic physiological roles

    Get PDF
    The nuclear hormone receptor (NR) superfamily includes the orphan NR4A subgroup, comprised of Nur77 (NR4A1), Nurr1 (NR4A2) and NOR-1 (NR4A3). These NRs are classified as early response genes, are induced by a diverse range of signals, including fatty acids, stress, growth factors, cytokines, peptide hormones, phorbol esters, neurotransmitters, and physical stimuli (for example magnetic fields, shear stress). The ability to sense and rapidly respond to changes in the cellular environment thus appears to be a hallmark of this subfamily. The members of the NR4A subgroup are well conserved in the DNA binding domain (~91-95%) and the C-terminal ligand-binding domain (~60%), but are divergent in the N-terminal AB region. These receptors bind as monomers, homodimers and heterodimers with RXRs (to mediate retinoid signaling) to different permutations of the canonical NR binding motif. The NR4A subgroup activates gene expression in a constitutive ligand-independent manner. NR4A-mediated trans-activation (LBD) involves unusually active N-terminal AF-1 domains that mediate coactivator recruitment. Moreover, the NR4A receptors encode atypical LBDs and AF-2 domains. For example, the LBDs contain no cavity due to bulky hydrophobic residue side chains, and lack the classical coactivator-binding cleft constituted by helices 3, 4 and 12. However, a hydrophobic patch exists between helices 11 and 12, that encodes a novel cofactor interface that modulates transcriptional activity. In line with the pleiotropic physiological stimuli that induce the NR4A subgroup, these orphan NRs have been implicated in cell cycle regulation (and apoptosis), neurological disease, steroidogenesis, inflammation, carcinogenesis and atherogenesis

    NR4A Gene Expression Is Dynamically Regulated in the Ventral Tegmental Area Dopamine Neurons and Is Related to Expression of Dopamine Neurotransmission Genes

    Get PDF
    The NR4A transcription factors NR4A1, NR4A2, and NR4A3 (also known as Nur77, Nurr1, and Nor1, respectively) share similar DNA-binding properties and have been implicated in regulation of dopamine neurotransmission genes. Our current hypothesis is that NR4A gene expression is regulated by dopamine neuron activity and that induction of NR4A genes will increase expression of dopamine neurotransmission genes. Eticlopride and γ-butyrolactone (GBL) were used in wild-type (+/+) and Nurr1-null heterozygous (+/−) mice to determine the mechanism(s) regulating Nur77 and Nurr1 expression. Laser capture microdissection and real-time PCR was used to measure Nurr1 and Nur77 mRNA levels in the ventral tegmental area (VTA). Nur77 expression was significantly elevated 1 h after both GBL (twofold) and eticlopride (fourfold). In contrast, GBL significantly decreased Nurr1 expression in both genotypes, while eticlopride significantly increased Nurr1 expression only in the +/+ mice. In a separate group of mice, haloperidol injection significantly elevated Nur77 and Nor1, but not Nurr1 mRNA in the VTA within 1 h and significantly increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) mRNA expression by 4 h. These data demonstrate that the NR4A genes are dynamically regulated in dopamine neurons with maintenance of Nurr1 expression requiring dopamine neuron activity while both attenuation of dopamine autoreceptors activation and dopamine neuronal activity combining to induce Nur77 expression. Additionally, these data suggest that induction of NR4A genes could regulate TH and DAT expression and ultimately regulate dopamine neurotransmission

    Undergraduate experiment with fractal diffraction gratings

    Full text link
    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results. © 2011 IOP Publishing Ltd.We acknowledge financial support from grants DPI2008-02953 and TRA2009-0215, Ministerio de Ciencia e Innovacion, Spain. We also acknowledge support from Generalitat Valenciana through the project PROMETEO2009-077. This work has been developed by Teaching Innovation Groups from the Universitat Politecnica de Valencia (e-MACAFI) and the Universitat de Valencia (GCID35/2009).Monsoriu Serra, JA.; Furlan, WD.; Pons, A.; Gimenez Valentin, MH. (2011). Undergraduate experiment with fractal diffraction gratings. European Journal of Physics. 32:687-694. doi:10.1088/0143-0807/32/3/005S6876943

    Reduced PTEN expression in the pancreas overexpressing transforming growth factor-beta 1

    Get PDF
    PTEN is a candidate tumour suppressor gene and frequently mutated in multiple cancers, however, not in pancreatic cancer. Recently, it has been demonstrated that PTEN expression is regulated by TGF-β1. Using TGF-β1 transgenic mice (n=7) and wildtype littermates (n=6), as well as pancreatic tissues obtained from organ donors (n=10) and patients with pancreatic cancer (n=10), we assessed the expression of PTEN by means of immunohistochemistry and semiquantitative PCR analysis. In addition, PANC-1 cells were treated with TGF-β1 in vitro and the levels of PTEN mRNA were determined in these cells. In human pancreatic cancers PTEN mRNA levels were significantly decreased (P<0.05). In addition, in the pancreas of TGF-β1 transgenic mice the expression of PTEN was significantly reduced (P<0.01), as compared to wildtype littermates and incubation of PANC-1 cells with TGF-β1 decreased PTEN mRNA levels after 24 h. Inasmuch as TGF-β1 decreases PTEN expression in human pancreatic cancer cells and human pancreatic cancers overexpress TGF-β1, the reduced expression of PTEN in pancreatic cancer may be mediated by TGF-β1 overexpression. Thus, although PTEN is not mutated in pancreatic cancers, the reduction of its expression may give pancreatic cancer cells an additional growth advantage

    Quality assessment of an interferon-gamma release assay for tuberculosis infection in a resource-limited setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When a test for diagnosis of infectious diseases is introduced in a resource-limited setting, monitoring quality is a major concern. An optimized design of experiment and statistical models are required for this assessment.</p> <p>Methods</p> <p>Interferon-gamma release assay to detect tuberculosis (TB) infection from whole blood was tested in Hanoi, Viet Nam. Balanced incomplete block design (BIBD) was planned and fixed-effect models with heterogeneous error variance were used for analysis. In the first trial, the whole blood from 12 donors was incubated with nil, TB-specific antigens or mitogen. In 72 measurements, two laboratory members exchanged their roles in harvesting plasma and testing for interferon-gamma release using enzyme linked immunosorbent assay (ELISA) technique. After intervention including checkup of all steps and standard operation procedures, the second trial was implemented in a similar manner.</p> <p>Results</p> <p>The lack of precision in the first trial was clearly demonstrated. Large within-individual error was significantly affected by both harvester and ELISA operator, indicating that both of the steps had problems. After the intervention, overall within-individual error was significantly reduced (<it>P </it>< 0.0001) and error variance was no longer affected by laboratory personnel in charge, indicating that a marked improvement could be objectively observed.</p> <p>Conclusion</p> <p>BIBD and analysis of fixed-effect models with heterogeneous variance are suitable and useful for objective and individualized assessment of proficiency in a multistep diagnostic test for infectious diseases in a resource-constrained laboratory. The action plan based on our findings would be worth considering when monitoring for internal quality control is difficult on site.</p
    • …
    corecore