75 research outputs found

    Local Structure and Spin Transition in Fe2O3 Hematite at High-Pressure

    Full text link
    The pressure evolution of the local structure of Fe2O3 hematite has been determined for the first time by extended x-ray absorption fine structure up to 79 GPa. The comparison to the different high-pressure forms proposed in the literature suggests that the orthorhombic structure with space group Aba2 is the most probable. The crossover from Fe high-spin to low-spin states with pressure increase has been monitored from the pre-edge region of the Fe K-edge absorption spectra. The "simultaneous" comparison with the local structural changes allows us to definitively conclude that it is the electronic transition that drives the structural transition and not viceversa

    Anomalous wide-angle X-ray scattering apparatus on the GILDA beamline at the ESRF.

    Get PDF
    The experimental apparatus for anomalous wide-angle X-ray scattering (AWAXS) on the GILDA beamline at the ESRF is described. The main features are the high beam stability and reproducibility which allow anomalous scattering effects to be resolved also on dilute elements, the large spectral range which allows AWAXS experiments at the K edges of heavy elements, and the use of a high-efficiency detection system. The apparatus has been tested in extreme conditions by performing AWAXS experiments at the Eu K edge in Eu-doped Sr metaphosphate glasses

    Facile synthesis of high-surface area platinum-doped ceria for low temperature CO oxidation

    Get PDF
    International audienceUsing a simple slow decomposition method of nitrate precursors, high-surface area platinum-doped ceria with a crystallite size of 9 nm can be prepared. The catalytic performance of the compound can be tuned by changing the reduction temperature under hydrogen (300°C, 500°C and 700°C). The catalyst treated at 300°C shows the best catalytic performance, being active at room temperature. The materials were analysed using a combination of structural characterization methods (X-ray diffraction (XRD), nitrogen physisorption, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM)), surface sensitive methods (X-ray photoelectron spectroscopy (XPS), H 2-chemisorption and H 2-temperature-programmed reduction (TPR)) and X-ray absorption fluorescence spectroscopy (XAFS). HAADF-STEM and XAFS analysis suggests successful doping of platinum in the ceria lattice. After pretreatment at 300°C, the situation is slightly different. While no defined platinum nanoparticles can be identified on the surface, some platinum is in a reduced state (XPS, H 2-chemisorption)

    Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx_{x} removal revealed by operando X-ray spectrotomography

    Get PDF
    NOx emissions are a major source of pollution, demanding ever improving performance from catalytic aftertreatment systems. However, catalyst development is often hindered by limited understanding of the catalyst at work, exacerbated by widespread use of model rather than technical catalysts, and global rather than spatially-resolved characterisation tools. Here we combine operando X-ray absorption spectroscopy with microtomography to perform 3D chemical imaging of the chemical state of copper species in a Cu-SSZ-13 washcoated monolith catalyst during NOx_{x} reduction. Gradients in copper oxidation state and coordination environment, resulting from an interplay of NOx reduction with adsorption-desorption of NH3_{3} and mass transport phenomena, were revealed with micrometre spatial resolution while simultaneously determining catalytic performance. Crucially, direct 3D visualisation of complex reactions on nonmodel catalysts is only feasible using operando X-ray spectrotomography, which can improve our understanding of structure-activity relationships including the observation of mass and heat transport effects

    Determination of the magnetostrictive atomic enviroments in FeCoB alloys

    Get PDF
    The atomic environments of Fe and Co involved in the magnetostriction effect in FeCoB alloys have been identified by differential extended x-ray fine structure (DiffEXAFS) spectroscopy. The study, done in amorphous and polycrystalline FeCoB films, demonstrates that the alloys are heterogeneous and that boron plays a crucial role in the origin of their magnetostrictive properties. The analysis of DiffEXAFS in the polycrystalline and amorphous alloys indicates that boron activates magnetostriction when entering as an impurity into octahedral interstitial sites of the Fe bcc lattice, causing its tetragonal distortion. Magnetostriction would be explained then by the relative change in volume when the tetragonal axis of the site is reoriented under an externally applied magnetic field. The experiment demonstrates the extreme sensitivity of DiffEXAFS to characterize magnetostrictive environments that are undetectable in their related EXAFS spectra

    Perpendicular magnetic anisotropy in granular multilayers of CoPd alloyed nanoparticles

    Get PDF
    Under the terms of the Creative Commons Attribution license.-- et al.Co-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by COPD alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) μB and 0.45(4) μB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) μB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3d-4d bands associated to the Co and Pd chemical arrangement in a L10 structure type.The financial support of the Spanish Ministerio de Economía MAT2014-53921-R and Aragonese DGA-IMANA E34 projects is acknowledged.Peer Reviewe

    Magnetism and structure of amorphous Co-W alloyed nanoparticles

    Get PDF
    Resumen del póster presentado al American Physical Society March Meeting celebrado en Boston (US) del 27 de febrero al 2 de marzo de 2012.-- et al.W-capped Co nanoparticles dispersed in an alumina matrix are studied by means of high-resolution transmission electron microscopy, extended x-ray absorption fine structure, SQUID-based magnetic measurements, ac magnetic susceptibility, and x-ray magnetic circular dichroism. Results show the formation of amorphous Co-W alloy nanoparticles, the magnetic properties of which are modified by the amount of W or Co present in the samples. The average Co magnetic moment depends on the number of W atoms surrounding it. Co-W particles show superparamagnetic behavior and are described as an array of noninteracting particles with random anisotropy axes and an average moment per particle proportional to the particle volume and to the average Co moment for each alloy composition. Values of the magnetic anisotropy constant of the particles are on the order of 10 6 erg/cm 3 , higher than that of bulk Co. Evidence of short-range ordering within each amorphous particle is found that provides insight of the origin of their magnetic anisotropy.Peer reviewe
    corecore