31 research outputs found

    Dry swing training with a light bat increases bat speed

    Get PDF
    Baseball training usually includes dry swing training to improve batting ability. However, no consensus has been reached on the relationship between bat weight and the increase in post-dry swing training bat speed. We hypothesized that dry swing training with a light bat would increase post dry swing training bat speed. Therefore, the purpose of this study was to examine the effect of dry swing training with a light bat on post dry swing training bat speed by comparing a light bat group with a heavy bat group. A total of 34 healthy male students from a university baseball team were randomly divided into a light bat group (n = 17) and a heavy bat group (n = 17). Subjects performed 100 dry swings per day, twice a week for eight weeks. The light bat group performed dry swing training with a 10.6 oz bat and the heavy bat group with a 38.8 oz bat. Bat speed and muscle power were measured before and after the intervention. There was no interaction between the intervention and post dry swing training bat speed, knee extension strength, shoulder horizontal flexion, or hand grip strength. There was a main effect of the intervention on post dry swing training bat speed and shoulder horizontal flexion. Bat speed increased in both groups, but without significant group differences in intervention effects. Since light bat loads in this study were very low, dry swing training with a light bat may be more effective and less strenuous

    An easy and safe training method for trunk function improves mobility in total knee arthroplasty patients: A quasi-randomized controlled trial.

    No full text
    OBJECTIVE:Total knee arthroplasty (TKA) is aimed mainly at reducing pain and restoring mobility. However, mobility deficits can persist even longer than 1 year. The trunk function and movement velocity of any region have been recently recognized to be critical for determining mobility in older people. Therefore, the main goal of this quasi-randomized trial is to clarify the effectiveness of a novel training method, the seated side tapping (SST) training, for improving mobility by focusing on movement velocity of trunk function in the short term after TKA. METHODS:SST training consists of side trunk movements repeated as quickly as possible in a seated position. All participants after TKA were randomly assigned to the SST training group (n = 37) or control training group (n = 38). The participants in the SST group performed SST training plus the standard rehabilitation program 5 days per week for 3 weeks after TKA, while the control group performed only the standard rehabilitation programs. The primary outcome was the effect of SST training on mobility, indicated by gait speed and the timed up and go test (TUG) time. Measurements were performed before and 1, 2, and 3 weeks after surgery. RESULTS:At all-time points, the patients in the SST group showed significantly better mobility, despite that knee function, represented by muscle strength, range of motion, and degree of pain at the knee joint, was similar in both groups. The difference in gait speed between the groups was >0.1 m/s at all time points, which is clinically significant. CONCLUSION:SST training significantly improved patients' mobility within 3 weeks after TKA, despite that no additional benefit was observed in knee function. The findings in this study indicate that SST training may be considered as a part of the rehabilitation program after TKA, although further evaluation of its long-term effectiveness is needed. TRIAL REGISTRATION:University Hospital Medical Information Network Clinical Trials Registry (UMIN-CTR; UMIN000027909)

    Age-related changes and sex differences in ankle plantarflexion velocity

    No full text
    Abstract Ankle plantar flexors play a vital role in the mobility of older adults. The strength and velocity of plantarflexion are critical factors in determining walking speed. Despite reports on how age and sex affect plantarflexion strength, basic information regarding plantarflexion velocity is still lacking. This cross-sectional observational study investigated age-related changes and sex differences in plantarflexion velocity by comparing them with plantarflexion strength. A total of 550 healthy adults were classified into four age groups for each sex: Young (< 40 years old), Middle-aged (40–64 years old), Young-old (65–74 years old), and Older-old (≧ 75 years old). We measured plantarflexion velocity and strength in the long-sitting position using a gyroscope and a hand-held dynamometer, respectively. Two-way analysis of variance revealed no interaction between age and sex for either plantarflexion velocity or strength. Plantarflexion velocity exhibited a significant decline with aging, as did the plantarflexion strength. We found no significant sex differences in plantarflexion velocity in contrast to plantarflexion strength. The results indicated a significant decrease with age and no difference in plantarflexion velocity between males and females characteristic plantarflexion velocity. Understanding the characteristics of plantarflexion velocity could contribute to preventing a decline in mobility in older adults

    Identification of a Male-Produced Aggregation Sex Pheromone in <i>Rosalia batesi</i>, an Endemic Japanese Longhorn Beetle

    No full text
    The longhorned beetle Rosalia batesi Harold (Coleoptera; Cerambycidae) is endemic to Japan, where its range extends from Hokkaido to Kyushu. The colorful adults are well-known to entomologists and collectors worldwide. It is a hardwood-boring species with larvae that develop in dead broad-leaf trees. In laboratory bioassays, females were attracted to males, which suggested that males produce a sex pheromone. The congeneric species R. alpina is native to Europe, and another congener, R. funebris, is distributed in North America. The pheromone components produced by males of these species had been previously identified as two compounds from different biosynthetic pathways. In the present study, volatiles were collected from beetles of both sexes, and the analyses of the resulting extracts revealed a single male-specific compound, which was identified as 3,5-dimethyl-6-(1-methylbutyl)-pyran-2-one; this is the same compound as the pheromone of the European R. alpina. This alkylated pyrone structure is, so far, unique among known cerambycid pheromones. In field bioassays with traps baited with the racemic synthetic pheromone, significant numbers of both sexes of R. batesi were attracted in an approximately equal ratio, indicating that the compound is an aggregation-sex pheromone rather than a sex pheromone

    Immediate Effects of Single-Session High-Velocity Training for Lateral Trunk Movement on Gait Function in Early Postoperative Patients after Total Hip Arthroplasty: A Nonrandomized Controlled Trial

    No full text
    Background: Total Hip Arthroplasty (THA) is an effective method for relieving pain and improving gait function. However, THA patients demonstrate slow gait speed at discharge. Rehabilitation programs after THA require the immediate improvement of gait speed early in the postoperative period. To examine the immediate effects of seated side tapping training (SSTT), which focuses on lateral trunk movement and movement velocity, on gait function in early postoperative THA patients, the methods were as follows: The SSTT group performed five repetitions of a task in which they moved their trunks laterally to alternately touch markers to their left and right side as quickly as possible 10 times in a seated position. One set of SSTT lasted approximately 3 min. The control group rested in a seated position for 10 min. Results: Significant interactions were observed for gait speed, stride time, and stride time coefficient of variability. The SSTT group demonstrated significant pre-post-intervention improvement in gait speed, stride time, and coefficient of variability. Conclusions: SSTT improved both gait speed and gait stability and can be performed easily and safely. Therefore, single-session high-velocity trunk training may be an effective method to improve gait function immediately in early postoperative THA patients

    Perivascular Adipose Tissue-Enhanced Vasodilation in Metabolic Syndrome Rats by Apelin and N-Acetyl–l-Cysteine-Sensitive Factor(s)

    No full text
    Perivascular adipose tissue (PVAT) can regulate vascular tone. In mesenteric arteries of SHRSP.Z-Leprfa/IzmDmcr rats (SHRSP.ZF) with metabolic syndrome, vascular dysfunction is compensated by PVAT-dependent mechanisms that disappear with increasing age. In this study, we investigated the mechanisms of the age-related changes and responsible factor(s) involved in the enhancing effects of mesenteric arterial PVAT in SHRSP.ZF. Acetylcholine- and sodium nitroprusside-induced relaxations of isolated arteries were greater with PVAT than without PVAT at 17 and 20 weeks of age (wks), and as expected, this enhancement by the presence of PVAT disappeared at 23 wks. PVAT mRNA levels of angiotensin II type 1 (AT1) receptor-associated protein was less and AT1 receptor was unchanged at 23 wks when compared to 20 wks. At 20 wks, the enhanced acetylcholine-induced relaxation by the presence of PVAT was inhibited by N-acetyl-l-cysteine (NAC). Acetylcholine-induced relaxation of arteries without PVAT was increased in the presence of exogenously added apelin. PVAT mRNA level of apelin was higher in SHRSP.ZF than in control Wistar-Kyoto rats, and the level was decreased with aging. These results suggest that AT1 receptor activation in PVAT, and changes in the regulation of apelin and a NAC-sensitive factor are related to the age-dependent deterioration of the vasodilation enhancing effects of mesenteric arterial PVAT in SHRSP.ZF
    corecore