106 research outputs found

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Experimental tests of CPT symmetry and quantum mechanics at CPLEAR

    Get PDF
    We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data.We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data

    Experimental tests of CPT symmetry and quantum mechanics at CPLEAR

    Get PDF
    We review a phenomenological parametrization of an open quantum-mechanical formalism for CPT violation in the neutral kaon system, and constrain the parameters using fits to recent CPLEAR data

    The CPLEAR detector at CERN

    Get PDF
    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 produced by the annihilation of pˉ\bar{\rm p}'s in a hydrogen gas target. The K0{\rm K}^0 and Kˉ0\bar{\rm K}^0 are identified by their companion products of the annihilation K±π{\rm K}^{\pm} \pi^{\mp} which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable of full on-line reconstruction and selection of events. The design, operating parameters and performance of the sub-detectors are described.

    Physics at CPLEAR

    Get PDF
    LEAR offered unique opportunities to study the symmetries which exist between matter and antimatter. At variance with other approaches at this facility, CPLEAR was an experiment devoted to the study of , and symmetries in the neutral-kaon system. A variety of measurements allowed us to determine with high precision the parameters which describe the time evolution of the neutral kaons and their antiparticles, including decay amplitudes, and the related symmetry properties. Limits concerning quantum-mechanical predictions (EPR, coherence of the wave function) or the equivalence principle of general relativity have been obtained. An account of the main features of the experiment and its performances is given here, together with the results achieved.http://www.sciencedirect.com/science/article/B6TVP-47F7DN6-2/1/21e8338e47f0a67bf401b4882a11cee
    corecore