102 research outputs found

    Decontamination of Waste-water by Metal Phthalocyanines Encapsulated in Polymeric Microcapsules

    Get PDF
    Polymeric microcapsules encapsulating iron phthalocyanine (Fe-Pc) and zinc phthalocyanine (Zn-Pc) were successfully prepared in this study. Absorption spectra of polymeric microcapsules encapsulating metal phthalocyanines were measured in visible light range. It was expected from the results that the polymeric microcapsules encapsulating metal phthalocyanines showed high photocatalytic activity upon irradiation with visible light such as sunlight. The catalytic and phtocatalytic activities of encapsulated Fe-Pc and Zn-Pc were investigated in the decomposition of methylene blue in water. The encapsulatedd Fe-Pc with H(2)O(2) exhibited a high catalytic activity. Methlene blue was efficiently decomposed by interaction of Fe-Pc with H(2)O(2)

    TONS504-PHOTODYNAMIC THERAPY INDUCES CYTOTOXIC EFFECTS IN EMT6 CELLS

    Get PDF
    In the present study, TONS504 (C51H58N8O5I2; molecular weight, 1,116.9), a novel cationic hydrophilic photosensitizer, was synthesized from protoporphyrin IX dimethyl ester through a five‑step process according to a patented method for use in photodynamic therapy (PDT). The subcellular localization of TONS504 and the cytotoxic effects of TONS504‑mediated PDT in the mouse mammary tumor EMT6 cell line were investigated. TONS504 was localized primarily in the lysosomes and partially in the mitochondria. The cytotoxic effects of TONS504‑mediated PDT in the mouse mammary tumor EMT6 cell line were investigated using a WST8 assay and an Oxidative Stress kit. The cell viability values following treatment with 10 µg/ml TONS504 at light energies of 0, 1, 5 and 10 J/cm2 were 92.5, 101.8, 27.7 and 1.8%, respectively. The percentages of reactive oxygen species (ROS)(+) cells following the same treatment were 8.6, 8.5, 29.2 and 70.1%, respectively, whereas the percentages of apoptotic cells were 7.1, 5.6, 24.8 and 48.7%, respectively. The percentages of ROS(+) and apoptotic cells in the group subjected to TONS504‑mediated PDT increased in a manner dependent on the TONS504 concentration and light energy. Further studies are required to evaluate the in vivo pharmacokinetics, tissue distribution and photodynamic effects of TONS504

    The Japan Public Health Center-based Prospective Study for the Next Generation (JPHC-NEXT): Study Design and Participants

    Get PDF
    Background: Lifestyle and life-environment factors have undergone drastic changes in Japan over the last few decades. Further, many molecular epidemiologic studies have reported that genetic, epigenetic, and other biomarker information may be useful in predicting individual disease risk.Methods: The Japan Public Health Center-based Prospective Study for the Next Generation (JPHC-NEXT) was launched in 2011 to identify risk factors for lifestyle-related disease, elucidate factors that extend healthy life expectancy, and contribute toward personalized healthcare based on our more than 20 years’ experience with the JPHC Study. From 2011 through 2016, a baseline survey was conducted at 16 municipalities in seven prefectures across the country. A self-administered questionnaire was distributed to all registered residents aged 40–74, which mainly asked about lifestyle factors, such as socio-demographic situation, personal medical history, smoking, alcohol and dietary habits. We obtained informed consent from each participant to participate in this long follow-up study of at least 20 years, including consent to the potential use of their residence registry, medical records, medical fee receipts, care insurance etc., and to the provision of biospecimens (blood and urine), including genomic analysis.Results: As of December 31, 2016, we have established a population-based cohort of 115,385 persons (Response rate 44.1%), among whom 55,278 (47.9% of participants) have provided blood and urine samples. The participation rate was slightly higher among females and in the older age group.Conclusion: We have established a large-scale population-based cohort for next-generation epidemiological study in Japan

    Rationale and design of a randomized trial to test the safety and non‑inferiority of canagliflozin in patients with diabetes with chronic heart failure : the CANDLE trial

    Get PDF
    Background: Because type 2 diabetes mellitus is associated strongly with an increased risk of cardiovascular diseases, the number of patients with diabetes with chronic heart failure is increasing steadily. However, clinical evidence of therapeutic strategies in such patients is still lacking. A recent randomized, placebo-controlled trial in patients with type 2 diabetes with high cardiovascular risk demonstrated that the SGLT2 inhibitor, empagliflozin, reduced the incidence of hospitalization for heart failure. Because SGLT2 inhibitors cause a reduction in body weight and blood pressure in addition to improving glycemic control, they have the potential to exert beneficial effects on the clinical pathophysiology of heart failure. The aim of the ongoing CANDLE trial is to test the safety and non-inferiority of canagliflozin, another SGLT2 inhibitor, compared with glimepiride, a sulfonylurea agent, in patients with type 2 diabetes mellitus and chronic heart failure. Methods: A total of 250 patients with type 2 diabetes who are drug-naïve or taking any anti-diabetic agents and suffering from chronic heart failure with a New York Heart Association classification I to III will be randomized centrally into either canagliflozin or glimepiride groups (1: 1) using the dynamic allocation method stratified by age (<65, ≥65 year), HbA1c level (<6.5, ≥6.5 %), and left ventricular ejection fraction (<40, ≥40 %). After randomization, all the participants will be given the add-on study drug for 24 weeks in addition to their background therapy. The primary endpoint is the percentage change from baseline in NT-proBNP after 24 weeks of treatment. The key secondary endpoints after 24 weeks of treatment are the change from baseline in glycemic control, blood pressure, body weight, lipid profile, quality of life score related to heart failure, and cardiac and renal function. Discussion: The CANDLE trial is the first to assess the safety and non-inferiority of canagliflozin in comparison with glimepiride in patients with type 2 diabetes with chronic heart failure. This trial has the potential to evaluate the clinical safety and efficacy of canagliflozin on heart failure

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (&amp;lt;65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency &amp;lt; 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present
    corecore