5,769 research outputs found

    Detection of the Red Giant Branch Stars in M82 Using the Hubble Space Telescope

    Full text link
    We present color-magnitude diagrams and luminosity functions of stars in two halo regions of the irregular galaxy in M82, based on F555W and F814W photometry taken with the Hubble Space Telescope and Wide Field Planetary Camera 2. The I-band luminosity function shows a sudden jump at I~23.95 mag, which is identified as the tip of the red giant branch (TRGB). Adopting the Lee et al. (1993) calibration of the TRGB based on the RR Lyrae distances to Galactic globular clusters, we obtain the distance modulus of (m-M)_0=27.95 +- 0.14 (random) +- 0.16 (systematic) mag. This corresponds to a linear distance of 3.9 +- 0.3 (random) +- 0.3 (systematicf) Mpc, which agrees well with the distance of M81 deteremined from the HST observations of the Cepheid variable stars. In addition, we observe a significant number of stars apparently brighter than the TRGB. However, with the current data, we cannot rule out whether these stars are blends of fainter stars, or are indeed intermediate-age asymptotic giant branch stars.Comment: 8 figure

    Conformality and Gauge Coupling Unification

    Get PDF
    It has been recently proposed to embed the standard model in a conformal gauge theory to resolve the hierarchy problem, and to avoid assuming either grand unification or low-energy supersymmetry. By model building based on string-field duality we show how to maintain the successful prediction of an electroweak mixing angle with sin2ξ≃0.231sin^2\theta \simeq 0.231 in conformal gauge theories with three chiral families.Comment: 8 pages LaTe

    Properties of global monopoles with an event horizon

    Get PDF
    We investigate the properties of global monopoles with an event horizon. We find that there is an unstable circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the monopole, and discuss if they could be a model of galactic halos.Comment: 5 pages, 7 figure

    Cepheid and Tip of the Red Giant Branch Distances To the Dwarf Irregular Galaxy IC10

    Get PDF
    We present color-magnitude diagrams and luminosity functions of stars in the nearby galaxy IC 10, based on VI CCD photometry acquired with the COSMIC prime-focus camera on the Palomar 5m telescope. The apparent I-band luminosity function of stars in the halo of IC 10 shows an identifiable rise at I~21.7 mag. This is interpreted as being the tip of the red giant branch (TRGB) at M_V~-4 mag. Since IC 10 is at a very low Galactic latitude, its foreground extinction is expected to be high and the uncertainty associated with that correction is the largest contributor to the error associated with its distance determination. Multi-wavelength observations of Cepheid variable stars in IC 10 give a Population I distance modulus of 24.1 +- 0.2 mag, which corresponds to a linear distance of 660 +- 66 kpc for a total line-of-sight reddening of E(B-V) = 1.16 +- 0.08 mag, derived self-consistently from the Cepheid data alone. Applying this Population I reddening to the Population II halo stars gives a TRGB distance modulus of 23.5 +- 0.2 mag, corresponding to 500 +- 50 kpc. We consider this to be a lower limit on the TRGB distance. Reconciling the Cepheid and TRGB distances would require that the reddening to the halo is Δ\DeltaE(B-V) = 0.31 mag lower than that into the main body of the galaxy. This then suggests that the Galactic extinction in the direction of IC10 is (B-V) ~ 0.85

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πG≡Mp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if η≄Mp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte

    Description of even-even triaxial Nuclei within the Coherent State and the Triaxial Rotation-Vibration Models

    Get PDF
    The coherent state model (CSM) and the triaxial rotation-vibration model (TRVM) are alternatively used to describe the ground, gamma and beta bands of 228Th. CSM is also applied to the nuclei 126Xe and 130Ba, which were recently considered in TRVM. The two models are compared with respect to both their underlying assumptions and to their predicted results for energy levels and E2 branching ratios. Both models describe energies and quadrupole transitions of 228Th equally well and in good agreement with experiment, if the 03+_3^+ level at 1120 keV is interpreted as the head of the beta band. The other two 0+^+ levels at 832 and 939 keV are most likely not of a pure quadrupole vibration nature as has already been pointed out in the literature.Comment: 31 pages, RevTeX, 6 figure

    How to distinguish the Haldane/Large-D state and the intermediate-D state in an S=2 quantum spin chain with the XXZ and on-site anisotropies

    Full text link
    We numerically investigate the ground-state phase diagram of an S=2 quantum spin chain with the XXZXXZ and on-site anisotropies described by H=∑j(SjxSj+1x+SjySj+1y+ΔSjzSj+1z)+D∑j(Sjz)2{\mathcal H}=\sum_j (S_j^x S_{j+1}^x+S_j^y S_{j+1}^y+\Delta S_j^z S_{j+1}^z) + D \sum_j (S_j^z)^2, where Δ\Delta denotes the XXZ anisotropy parameter of the nearest-neighbor interactions and DD the on-site anisotropy parameter. We restrict ourselves to the Δ>0\Delta>0 and D>0D>0 case for simplicity. Our main purpose is to obtain the definite conclusion whether there exists or not the intermediate-DD (ID) phase, which was proposed by Oshikawa in 1992 and has been believed to be absent since the DMRG studies in the latter half of 1990's. In the phase diagram with Δ>0\Delta>0 and D>0D>0 there appear the XY state, the Haldane state, the ID state, the large-DD (LD) state and the N\'eel state. In the analysis of the numerical data it is important to distinguish three gapped states; the Haldane state, the ID state and the LD state. We give a physical and intuitive explanation for our level spectroscopy method how to distinguish these three phases.Comment: Proceedings of "International Conference on Frustration in Condensed Matter (ICFCM)" (Jan. 11-14, 2011, Sendai, Japan

    Spin-Reorientation Transition of Field-Induced Magnetic Ordering Phases in the Anisotropic Haldane System

    Full text link
    A possible spin-reorientation transition in field-induced magnetic ordering phases of the S=1 Haldane system with large easy-plane anisotropy is proposed, using an effective Lagrangian formalism as well as the density matrix renormalization group method. Such a spin-reorientation transition is predicted in the case where the applied magnetic field is inclined from the easy axis of the anisotropy. We point out that this transition has a close connection with a variation of the order parameter even at zero temperature, although it is different from a quantum analog of the so-called spin-flop transition proposed for the system having a strong easy axis anisotropy. In connection with a novel phase observed recently in the Haldane system at high fields, we discuss possible implications for the field-induced magnetic ordering.Comment: 14 pages, 7 figure

    Comment On ``Grand Unification and Supersymmetric Threshold"

    Full text link
    Barbieri and Hall have argued that threshold effects at the scale of grand-unification wipe out predictions on the SUSY scale, M_S. Using triviality arguments we give upper bounds on ultraheavy particles, while proton stability gives lower bounds on the mass of the higgs color-triplet. We find no useful lower bound on the ÎŁ\Sigma supermultiplet, but if the strong coupling constant is as large as recent experiments suggest, unification in the minimal SUSY SU(5) model requires that the SigmaSigma masses be ∌10−7MV\sim 10^{-7}M_V and that the color octet and weak triplet be split in mass by a factor of ∌\sim100.Comment: 6 pages (revised

    Quantum spin chains in a magnetic field

    Full text link
    We demonstrate that the ``worm'' algorithm allows very effective and precise quantum Monte Carlo (QMC) simulations of spin systems in a magnetic field, and its auto-correlation time is rather insensitive to the value of H at low temperature. Magnetization curves for the s=1/2s=1/2 and s=1s=1 chains are presented and compared with existing Bethe ansatz and exact diagonalization results. From the Green function analysis we deduce the magnon spectra in the s=1 system, and directly establish the "relativistic" form E(p)=(\Delta ^2 +v^2 p^2)^{1/2} of the dispersion law.Comment: 6 pages, 8 figures; removed discussion of spin-2 case - will be published later in a separate pape
    • 

    corecore