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We investigate the properties of global monopoles with an event horizon. We find that there is an unstable
circular orbit even if a particle does not have an angular momentum when the core mass is negative. We also
obtain the asymptotic form of solutions when the event horizon is much larger than the core radius of the
monopole, and discuss if they could be a model of galactic halos.
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I. INTRODUCTION

In unified theories, various kinds of topological defects
have been predicted and may appear in cosmological phase
transitions in the early Universe. Therefore it is important to
investigate such defects both theoretically and observation-
ally. Concerning global monopoles, important facts were
found recently:~i! Solutions with an event horizon exist
@1–3#; ~ii ! regular global monopoles coupled nonminimally
to gravity have a stable circular orbit and may explain rota-
tion curves in spiral galaxies, as shown by Nucamendi, Sal-
gado, and Sudarsky~NSS! @4#.

The result~i! is interesting since the static solutions of
regular global monopoles are always repulsive@5#. More-
over, black hole solutions are stable though topological
charge is lost in the strict sense@6# and there are solutions
with zero mass which are somewhat pathological@2#. Thus,
we need to understand their properties. In particular, it would
be interesting to investigate a particle motion around the ho-
rizon. This is one of our main concerns in this paper.

Possibility~ii ! shows that global monopoles can be locally
attractive in the nonminimally coupled theory of gravity. Al-
though there have been many attempts to explain rotation
curves in spiral galaxies, there is no definite one at present.
Among solitonic objects, global monopoles have the remark-
able property that energy density decreases with the distance
r 22 @7#, which may be desirable to explain the flatness of
rotation curves. To remove the unprefereble repulsive prop-
erty of global monopoles, NSS introduced nonminimal cou-
pling and succeeded to obtain locally attractive solutions.

Taking both ~i! and ~ii ! into consideration, we notice a
possibility that global monopoles with an event horizon can
explain rotation curves since they would be attractive. There
are several advantages in this model compared with the NSS
model. First, we need not require the nonminimal coupling,
which are constrained astrophysically@8#. Second, they
would also be model black holes in the central galaxies.

Third, the core mass can be chosen to be astronomically
large, contrary to the NSS model, where the core mass is
necessarily microscopic. Therefore it is important to study
the properties of such global monopoles, and discuss whether
or not they can be a realistic candidate as galactic halos,
taking astrophysical bounds into account@9#.

This paper is written as follows. In Sec. II, we explain our
model and basic equations. In Sec. III, we investigate global
monopoles with an event horizon in two situations sepa-
rately. In Sec. III A, we consider the case where the size of
event horizon is comparable to the core radius of the mono-
pole to compare with regular monopoles. In Sec. III B, we
consider the case where the size of an event horizon is as-
trophysically large. In Sec. IV, we denote concluding re-
marks and discuss problems concerning the restriction from
observation.

II. BASIC EQUATIONS FOR NUMERICAL ANALYSIS

We begin with the action

S5E d4xA2gF R

16pG
2

~¹Fa!2

2
2

l

4
~FaFa2v2!2G ,

~1!

whereG and Fa are the gravitational constant and the real
triplet Higgs field, respectively. The theoretical parametersv
and l are the vacuum expectation value and the self-
coupling constant of the Higgs field, respectively.

We assume that the space time is static and spherically
symmetric, in which the metric is written as

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~2!

where f (r )ª122Gm(r )/r . We adopt the hedgehog ansatz
given by

Fa5vrah~r !, ~3!

wherera is a unit radial vector.
Under the above assumptions, the basic equations are
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where 85d/dr̄ and
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We have introduced the following dimensionless variables:

r̄ 5vAlr , m̄5GvAlm, v̄5vA4pG. ~8!

We assume the regular event horizon atr 5r H :

m̄H5
r̄ H

2
, dH,`, ~9!

hH8 5
hH@21 r̄ H

2 ~hH
2 21!#

r̄ H~122r̄ H
2 v̄2UH!

. ~10!

The variables with subscriptH are evaluated at the horizon.
We introduce the variable

m̄core~ r̄ !ªm̄~ r̄ !2 v̄2r̄ ~11!

and assume the boundary conditions at spatial infinity as

m̄core~`!5:M̄5const, d~`!50, h~`!51, ~12!

which means that the space time is asymptotically ‘‘flat’’
with deficit angle. HereM̄ corresponds to a core mass of the
monopole, which determines a particle motion we will see
below. We will obtain the black hole solutions numerically
by solving Eqs.~4!–~6! iteratively with the boundary condi-
tions ~9!, ~10!, and ~12!. For our numerical calculation, we
use the double-precision Bulirsch-Store Method based on
Ref. @10#.

III. PROPERTIES

The space-time structure of global monopole black holes
depends on the expectation value of the Higgs field@1#. For

v̄2,1/2, there is a solution with asymptotically ‘‘flat’’ space
time. We concentrate on this realistic case.

A. Small horizon

Typically, it is supposed that a global monopole has a
nontrivial structure in the corer &r coreª2/vAl @5#, while
the field is almost constant,h>1, outside the corer

*rcore. Therefore, we expect that a monopole black hole

with a small horizonr H>r core ~i.e., r̄ H>1) may have new
properties.

First, we show field distributions of black hole solutions
in Figs. 1~a! r̄ -h and 1~b! r̄ -m̄core. We choosev̄50.6,0.2 and
r̄ H50.3. In Fig. 1~a!, we find that the Higgs field has a
nontrivial structure extending to;10 and it does not depend
on the expectation value of the Higgs field, which is impor-
tant in the later analysis. In this solution,h increases mono-

FIG. 1. The behavior of~a! h, ~b! m̄core for r̄ H50.3 and v̄
50.6, 0.2.
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tonically with r̄ . Although solutions whereh is not mono-
tonic exist @3#, here we only consider monotonic solutions
for simplicity. Figure 1~b! shows thatm̄core for v̄50.6 de-
creases withr̄ much faster than that forv̄50.2. This is natu-
ral because of the factorv̄2r̄ in Eq. ~11!. The important point
is that m̄core becomes negative forv̄50.6 and positive for

v̄50.2 in the asymptotic region. As we will discuss below,
the sign ofm̄coreat larger ~i.e., M̄ ) determines the qualitative
behavior of particle motions around the monopole.

Let us consider the geodesic equation of a test particle in
the equatorial plane. In our coordinate system~2!, this is
expressed as

E2

2
5

ṙ 2

2
e22d1Veff , ~13!

where ˙5d/dt and E is the energy of the particle per unit
rest mass.Veff is defined as

Veffªe22dS 12
2Gm

r D S 11
L2

r 2 D , ~14!

whereL is the angular momentum of the particle per unit rest
mass.

We show the effective potentialVeff for r̄ H50.3 in Figs.
2~a! v̄50.2 and 2~b! v̄50.6. The angular momentum is cho-
sen as (L/r H)250 and 5. For (L/r H)255, there is no poten-
tial minimum for v̄50.6, while there is forv̄50.2. For
(L/r H)250, there is a potentialmaximumfor v̄50.6, while
there is not forv̄50.2. While the properties of the monopole
black hole withv̄50.2 are essentially the same as those of
the Schwarzschild black hole, largerv̄ changes properties
qualitatively. These different properties are determined by
the sign ofM̄ .

To evaluate the potential minimum, we substitute the
asymptotic formd→0 andm̄→ v̄2r̄ 1M̄ into Eq.~14!. Then,
dVeff /dr̄50 is satisfied at the positions

r̄ 65
L̄2~122v̄2!6AL̄4~122v̄2!2212L̄2M̄2

2M̄
, ~15!

where L̄ is defined asL̄ªvAlL. We find r̄ 6,0 when
L̄2(122v̄2)2.12M̄2 and M̄,0. Therefore, there is no po-
tential minimum even if a test particle has large angular mo-
mentum.

On the other hand, the potential maximum cannot be
evaluated from the asymptotic form of the solution because it
is near the horizon if it exists, as shown by Fig. 2. However,
we can discuss its existence as follows. IfM̄,0,Veff de-
creases withr̄ and approaches 122v̄2 Asymptotically, since
Veff50 at the horizon, there is at least one local maximum at
some r̄ . If M̄.0, on the other hand,Veff increases withr̄

and approaches 122v̄2 asymptotically; whether or not the
potential maximum appear depends onL̄ as in the Schwarzs-
child black hole. Thus, the sign ofM̄ is important to deter-
mine the particle motion around the black hole.

Such a convex form of the potential for aL50 particle
motion is characteristic of a global monopole black hole, and
does not appear neither in a Schwarzschild black hole nor in
a regular global monopole. In the case of a regular global
monopole, the whole space time is repulsive@5#, which
means thatVeff decreases monotonically.

Figure 3 shows the relation betweenr̄ H andM̄ for various

v̄. M̄ is negative in the limitr̄ H→0 as it is expected from the
regular solutions. Asv̄ increases, the region ofM̄,0 ex-
tends to largerr̄ H . As it was pointed out in Ref.@2#, there are

FIG. 2. The behavior ofVeff for r̄ H50.3, and (L/r H)250, 5.~a!

v̄50.2 and~b! v̄50.6.
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solutions withM̄50. In this case, a potential minimumr̄ 2

goes to infinity and a test particle cannot feel a black hole.

B. Large horizon

NSS argued that global monopoles with the nonminimally
coupled gravity may explain rotation curves in spiral galax-
ies @4#. However, the nonminimally coupled gravity has been
constrained astrophysically. Moreover, in the NSS model the
bound orbits exist only in the microscopic regionr &r core.
Thus, it is desirable to seek for other possibilities.

On the other hand, Wetterich discussed the possibility that
a massless scalar field may explain rotation curves of galac-
tic halos@11#. In his solutions, however, physical boundary
conditions were not taken into account. If we assume regu-
larity at the center or an event horizon of a black hole, only
a trivial solution remains. Nonexistence of nontrivial black
hole solutions are guaranteed by no hair theorem@12#. In this
sense, his model is also unrealistic.

Then, we turn to a global monopole with an event hori-
zon. This model is free from the above difficulties existing in
the NSS model. Furthermore, the existence of an event hori-
zon is realistic because massive black holes are observed in
the central regions of galaxies.

Let us consider astrophysical bounds from the mass den-
sity of monopoles in the universe at first. If we demand that
mass density of monopoles should be less than 10 times of
critical density@9#, we have

n,1023S 1016 GeV

v D 3

Mpc23, ~16!

where n is the number density of monopoles. Thus,v
!1016 GeV is required to explain rotational curves of galac-
tic halos. For definiteness, we choosev̄50.231024 and dis-
cuss the case where the event horizon is cosmological size.

This corresponds to the caser̄ H@1 unless the self-coupling
constant of the Higgs fieldl takes extremely smaller value
than 1.

To see the structure of the Higgs field forr̄ H@1, we plot
r H-(12hH) in Fig. 4. To maintain numerical accuracy, we
change the variable fromh(r ) to s(r )ª12h(r ). In this dia-
gram, the error is below a percent. We findhH>1 and (1
2hH)>1/r H

2 . We can check this relation analytically as fol-
lows. In the asymptotic region, supposing the asymptotic
form

h511 (
n51

`

Cnr 2n, ~17!

we haveC150 andC2521, which are consistent with our
numerical results above.

Because of this asymptotic behavior,M̄ can be estimated
by substituting h51 into Eq. ~4!. Then, we have the
asymptotic relation

M̄5
r̄ H

2
~122v̄2!. ~18!

We show the relationr̄ H-M̄ in Fig. 5 for v̄50.231024 and

v̄50.2, which confirms the relation~18!. Actually, Fig. 3
shows that this approximation is fairly good even forr̄ H

;1 whenv̄ is small.
Let us consider particle motions. Settingh51, we have

Veff;S 122v̄21
2M̄

r̄
D S 11

L̄2

r̄ 2 D . ~19!

FIG. 3. The relation betweenr̄ H andM̄ for variousv̄.
FIG. 4. The relation betweenr̄ H and (12hH) for v̄50.2

31024.
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Sincev̄ is small as constrained by Eq.~16!, we find that the
particle motion is practically the same as that in Schwarzs-
child black hole. We can regard this kind of behavior as
natural since the massive field has its structure comparable to
the Compton wavelength. Therefore, as long as we consider
an astronomical-sized event horizon, the effect of scalar
fields on particle motions is negligible.

IV. CONCLUSION AND DISCUSSION

We investigated properties of global monopoles with an
event horizon and revealed interesting features which had

not been known so far. The main features of test particle
motions are determined by the sign of the core mass; if it is
negative and if the event horizon is as small as the core
radius, there is an unstable circular orbit even for a particle
with zero angular momentum. We also found the asymptotic
form of the solutions when the event horizon is much larger
than the core radius; the qualitative features of the monopole
black hole is the same as that of the Schwarzschild black
hole.

Although our model does not explain observed rotation
curves very well, we obtain some lessons here. Our results
indicates that massive scalar fields would encounter with the
same difficulty as in our model. A typical mass scale of par-
ticle physics is so large that it generally contributes only to
microscopic structure, whose size is of order of the inverse
of the mass. In this sense, a massless scalar field considered
by Wetterich@11# might be useful. Although his model itself
does not satisfy physical boundary conditions neither of a
black hole nor of a regular solution, interaction with matter
may be a key ingredient to solve this problem. Including this
possibility, we also want to consider other solitonlike models
such as boson-fermion stars in the future@13#.

ACKNOWLEDGMENTS

N.S. thanks Luca Amendola for discussions and his hos-
pitality at Osservatorio Astronomico di Roma. This work
was supported in part by Grant-in-Aid for Scientific Re-
search Fund of the Ministry of Education, Science, Culture
and Technology of Japan, No. 154568~T.T.! and No.
15740132~N.S.!. This work was also supported in part by a
Grant-in-Aid for the 21st Century COE ‘‘Center for Diver-
sity and Universality in Physics,’’ and by the exchanging-
researcher project between Japan Society for the Promotion
of Science and National Research Council of Italy.

@1# S.L. Liebling, Phys. Rev. D60, 061502~1999!; 61, 024030
~2000!; D. Maison and S.L. Liebling, Phys. Rev. Lett.83, 5218
~1999!.

@2# U. Nucamendi and D. Sudarsky, Class. Quantum Grav.17,
4051 ~2000!.

@3# D. Maison, gr-qc/9912100.
@4# U. Nucamendi, M. Salgado, and D. Sudarsky, Phys. Rev. Lett.

84, 3037~2000!; Phys. Rev. D63, 125016~2001!.
@5# D. Harari and C. Lousto´, Phys. Rev. D42, 2626~1990!.
@6# H. Watabe and T. Torii, gr-qc/0307074; Phys. Rev. D66,

085019~2002!.

@7# M. Barriola and A. Vilenkin, Phys. Rev. Lett.63, 341 ~1989!.
@8# C. Will, Theory and Experiment in Gravitational Physics

~Cambridge University Press, Cambridge, 1981!.
@9# W.A. Hiscock, Phys. Rev. Lett.64, 344 ~1990!.

@10# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery,Numerical Recipes in FORTRAN~Cambridge University
Press, Cambridge, 1986!.

@11# C. Wetterrich, Phys. Lett. B522, 5 ~2001!.
@12# J.D. Bekenstein, Phys. Rev. D5, 1239~1972!; S.W. Hawking,

Commun. Math. Phys.25, 167 ~1972!.
@13# A.B. Henriques and L.E. Mendes, astro-ph/0301015.

FIG. 5. The relation betweenr̄ H and M̄ for v̄50.231024 and
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