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Abstract

It has been recently proposed to embed the standard model in a conformal

gauge theory to resolve the hierarchy problem, and to avoid assuming either

grand unification or low-energy supersymmetry. By model building based on

string-field duality we show how to maintain the successful prediction of an

electroweak mixing angle with sin
2
θ ≃ 0.231 in conformal gauge theories with

three chiral families.
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Most of the research beyond the standard model [1] is motivated by the hierarchy problem

and uses the two assumptions of grand unification and low-energy (∼ TeV ) supersymmetry.

This is, in turn, driven largely by the successful prediction of one number, the sin2θ of

the electroweak mixing angle θ. It is proposed to replace the two assumptions of grand

unification and low-energy supersymmetry by one assumption, conformality. It therefore is

important to show that sin2θ can be derived from conformality alone; that is the principal

objective of the model-building in this Letter.

Before entering into conformal model-building, let us briefly review the alternative. The

experimental data give couplings at the Z pole of [2] α3 = 0.118± 0.003, α2 = 0.0338, α1 =

5

3
α

′

Y = 0.0169 (where the errors on α1,2 are less than 1%) and sin2θ = α
′

Y /(α2+α
′

Y ) = 0.231

with an error less than 0.001. Note that α2/α1 is very nearly two; this will be used later.

The RGE for the supersymmetric grand unification [3,4] are

1

αi(MG)
=

1

αi(MZ)
−

bi
2π

ln
(

MG

MZ

)

(1)

Using the MSSM values bi = (63

5
, 1,−3) and substituting α2,3 at MZ = 91.187GeV gives

MG = 2.4 × 1016GeV and α2,3(MG)
−1 = 24.305. Using Eq(1) with i = 1 now predicts

α1(MZ) = 59.172 and hence sin2θ = 0.231; this is very impressive agreement with experi-

ment and is sometimes presented as the accurate meeting of three staight lines on a α−1
i (µ)

vs. lnµ plot [5,6].

The relationship of the Type IIB superstring to conformal gauge theory in d = 4 gives

rise to an interesting class of gauge theories. Choosing the simplest compactification [7] on

AdS5 × S5 gives rise to an N = 4 SU(N) gauge theory which is known to be conformal due

to the extended global supersymmetry and non-renormalization theorems. All of the RGE

β−functions for this N = 4 case are vanishing in perturbation theory. It is possible to break

the N = 4 to N = 2, 1, 0 by replacing S5 by an orbifold S5/Γ where Γ is a discrete group

with Γ ⊂ SU(2),⊂ SU(3), 6⊂ SU(3) respectively.

In building a conformal gauge theory model [8–10], the steps are: (1) Choose the discrete

group Γ; (2) Embed Γ ⊂ SU(4); (3) Choose the N of SU(N); and (4) Embed the Stan-
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dard Model SU(3) × SU(2) × U(1) in the resultant gauge group
⊗

SU(N)p (quiver node

identification). Here we shall look only at abelian Γ = Zp and define α = exp(2πi/p). It

is expected from the string-field duality that the resultant field theory is conformal in the

N −→ ∞ limit, and will have a fixed manifold, or at least a fixed point, for N finite.

Before focusing on N = 0 non-supersymmetric cases, let us first examine an N = 1

model first put forward in the work of Kachru and Silverstein [11]. The choice is Γ = Z3

and the 4 of SU(4) is 4 = (1, α, α, α2). Choosing N=3 this leads to the three chiral families

under SU(3)3 trinification [12]

(3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3) (2)

In this model it is interesting that the number of families arises as 4-1=3, the difference

between the 4 of SU(4) and N = 1, the number of unbroken supersymmetries. However this

model has no gauge coupling unification; also, keeping N = 1 supersymmetry is against the

spirit of the conformality approach. We now present three examples, Models A ,B and C

which accommodate three chiral families, break all supersymmetries (N = 0) and possess

gauge coupling unification, including the correct value of the electroweak mixing angle.

Model A. Choose Γ = Z7, embed the 4 of SU(4) as (α2, α2, α−3, α−1), and choose N=3

to aim at a trinification SU(3)C × SU(3)W × SU(3)H .

The seven nodes of the quiver diagram will be identified as C-H-W-H-H-H-W.

The behavior of the 4 of SU(4) implies that the bifundamentals of chiral fermions are in

the representations

7
∑

j=1

[2(Nj, N̄j+2) + (Nj, N̄j−3) + (Nj , N̄j−1)] (3)

Embedding the C, W and H SU(3) gauge groups as indicated by the quiver mode identifi-

cations then gives the seven quartets of irreducible representations
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[3(3, 3̄, 1) + (3, 1, 3̄)]1+

+[3(1, 1, 1 + 8) + (3̄, 1, 3)]2+

+[3(1, 3, 3̄) + (1, 1 + 8, 1)]3+

+[(2(1, 1, 1 + 8) + (1, 3̄, 3) + (3̄, 1, 3)]4+

+[2(1, 1, 1 + 8) + 2(1, 3̄, 3)]5+

+[2(3̄, 1, 3) + (1, 1, 1 + 8) + (1, 3̄, 3)]6+

+[4(1, 3, 3̄)]7

(4)

Combining terms gives, aside from (real) adjoints and overall singlets

3(3, 3̄, 1) + 4(3̄, 1, 3) + (3, 1, 3̄) + 7(1, 3, 3̄) + 4(1, 3̄, 3) (5)

Cancelling the real parts (which acquire Dirac masses at the conformal symmetry breaking

scale) leaves under trinification SU(3)C × SU(3)W × SU(3)H

3[(3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3)] (6)

which are the desired three chiral families.

Given the embedding of Γ in SU(4) it follows that the 6 of SU(4) transforms as

(α4, α, α, α−1, α−1, α−4). The complex scalars therefore transform as

7
∑

j=1

[(Nj , N̄j±4) + 2(Nj, N̄j±1)] (7)

These bifundamentals can by their VEVS break the symmetry SU(3)7 = SU(3)C×SU(3)2W×

SU(3)4H down to the appropriate diagonal subgroup SU(3)C × SU(3)W × SU(3)H .

Now to the final aspect of Model A which is its motivation, the gauge coupling unification.

The embedding in SU(3)7 of SU(3)C×SU(3)2W×SU(3)4H means that the couplings α1, α2, α3

are in the ratio α1/α2/α3 = 1/2/4. Using the phenomenological data given at the beginning,

this implies that sin2θ = 0.231. On the other hand, the QCD coupling is α3 = 0.0676 which

is too low unless the conformal scale is at least 10TeV. We prefer a scale ∼ 1 TeV for

conformal breaking where α3 is nearer to 0.10. This motivates our Models B and C below

which have larger α3 but are otherwise more complicated.
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Model B. Choose Γ = Z10 and embed Z10 ⊂ SU(4) such that 4 = (α4, α4, α−3, α−5). The

chiral fermions are therefore

10
∑

j=1

[2(Nj, N̄j+4) + (Nj, N̄j−3) + (Nj , N̄j−5)] (8)

To attain trinification we identify the quiver nodes as C-H-H-H-W-W-H-W-H-H and then

the chiral fermions are in the ten quartets of irreducible representations

[4(3, 3̄, 1)]1+

+[2(1, 3̄, 3) + (1, 1, 1 + 8)]2+

+[2(1, 1, 1 + 8) + (1, 3̄, 3)]3+

+[2(1, 3̄, 3) + (3̄, 1, 3) + (1, 1, 1 + 8)]4+

+[4(1, 3, 3̄)]5+

+[3(1, 3, 3̄) + (3̄, 3, 1)]6+

+[2(3̄, 1, 3) + (1, 1, 1 + 8)]7+

+[3(1, 3, 3̄) + (1, 1 + 8, 1)]8+

+[3(1, 1, 1 + 8) + (1, 3̄, 3)]9+

+[3(1, 1, 1 + 8) + (1, 3̄, 3)]10

(9)

Removing the (real) octets and singlets leaves

4(3, 3̄, 1) + (3̄, 3, 1) + 3(3̄, 1, 3) + 10(1, 3, 3̄) + 7(1, 3̄, 3) (10)

so that the chiral (complex) part is again

3[(3, 3̄, 1) + (1, 3, 3̄) + (3̄, 1, 3)] (11)

which are three chiral families.

The 6 of SU(4) transforms under Γ = Z10 as 6 = (α8, α, α, α−1, α−1, α−8) and so the

complex scalars are

10
∑

j=1

[(nj , N̄j±8) + 2(Nj , N̄j±1)] (12)
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With the given quiver node identification VEVs for these scalars can break SU(3)10 =

SU(3)C × SU(3)3W × SU(3)6H to the diagonal subgroup SU(3)C × SU(3)W × SU(3)H .

The couplings α1, α2, α3 are in the ratio α1/α2/α3 = 1/2/6 corresponding to sin2θ =

0.231 and α3 = 0.101. This is within the range of a TeV conformal breaking scale. Never-

theless, it is numerically irresistible to notice that the Z-pole values satisfy α1/α2/α3 = 1/2/7

which leads naturally to Model C.

Model C. Choose Γ = Z23 and embed in SU(4) by 4 = (α6, α6, α−5, α−7). Given this

embedding the quiver nodes can be chosen as C-C-X-X-X-H-H-W-H-X-X-X-X-X-X-X-W-

H-H-W-X-X-X where the thirteen X’s denote any distribution of of four W’s and nine H’s

that allows breaking by the complex scalars cited below. The quiver is arranged such that

according to the rule of (3C − 3̄W ) minus (3W − 3̄C) there are three chiral families. [The

model in [10] did not follow this rule and has two families.] Note that because of anomaly

cancellation and the occurrence of only bifundamentals the remainder of trinification is

automatic and need not be checked in every case.

The chiral families are as in Models A and B.

The 6 of SU(4) transforms as (α12, α, α, α−1, α−1, α−12). This implies complex scalars

whose VEVs can break SU(3)23 = SU(3)2C × SU(3)7W × SU(3)14W to SU(3)C × SU(3)W ×

SU(3)H with a suitable distribution of W and H nodes on the quiver.

With this choice of diagonal subgroups the couplings are in the ratio α1/α2/α3 = 1/2/7

corresponding to sin2θ = 0.231 and α3 = 0.118 which coincide with the Z-pole values.

Discussion We have given three examples of building conformal models from abelian Γ

with acceptable values of the couplings at the conformal scale, assuming that the SU(3)

gauge couplings are all equal at the conformal scale. Model A is the simplest but its α3 is

too small unless the conformal scale is taken up to at least 10TeV. Models B and C can

accommodate a lower conformal scale but are more complicated.
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There are two features of conformal models which bear repetition:

(1) Bifundamentals prohibit representations like (8,2) or (3,3) in the Standard Model

consistent with Nature.

(2) Charge quantization is incorporated since the abelian U(1)Y group has a positive-

definite β−function and cannot be conformal until it is embedded in a non-abelian group.

There are three questions which merit further investigation:

(1) The first question bears on whether there is a fixed manifold (line, plane,...) with

respect to the renormalization group or only a fixed point which is, in any case, sufficient to

apply our conformality constraints. In perturbation theory, do the β−functions vanish?

(2) Are the additional particles necessary to render the Standard Model conformal con-

sistent with the stringent constraints imposed by the precision electroweak data?

(3) Coefficients of dimension-4 operators are prescribed by group theory and all dimen-

sionless properties such as quark and lepton mass ratios and mixing angles are calculable.

Do these work and, if not, can one refine the model-building to obtain a best fit?

This work was supported in part by the US Department of Energy under Grant No.

DE-FG02-97ER-41036.
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