24 research outputs found

    Industrial scale isolation, structural and spectroscopic characterization of epiisopiloturine from Pilocarpus microphyllus stapf leaves: a promising alkaloid against schistosomiasis

    Get PDF
    This paper presents an industrial scale process for extraction, purification, and isolation of epiisopiloturine (EPI) (2(3H)- Furanone,dihydro-3-(hydroxyphenylmethyl)-4-[(1-methyl-1H-imidazol-4-yl)methyl]-, [3S-[3a(R*),4b]]), which is an alkaloid from jaborandi leaves (Pilocarpus microphyllus Stapf). Additionally for the first time a set of structural and spectroscopic techniques were used to characterize this alkaloid. EPI has shown schistomicidal activity against adults and young forms, as well as the reduction of the egg laying adult worms and low toxicity to mammalian cells (in vitro). At first, the extraction of EPI was done with toluene and methylene chloride to obtain a solution that was alkalinized with ammonium carbonate. The remaining solution was treated in sequence by acidification, filtration and alkalinization. These industrial procedures are necessary in order to remove impurities and subsequent application of the high performance liquid chromatography (HPLC). The HPLC was employed also to remove other alkaloids, to obtain EPI purity higher than 98%. The viability of the method was confirmed through HPLC and electrospray mass spectrometry, that yielded a pseudo molecular ion of m/z equal to 287.1 Da. EPI structure was characterized by single crystal X-ray diffraction (XRD), 1H and 13C nuclear magnetic resonance (NMR) in deuterated methanol/chloroform solution, vibrational spectroscopy and mass coupled thermal analyses. EPI molecule presents a parallel alignment of the benzene and the methyl imidazol ring separated by an interplanar spacing of 3.758 Å indicating a π-π bond interaction. The imidazole alkaloid melts at 225°C and decomposes above 230°C under air. EPI structure was used in theoretical Density Functional Theory calculations, considering the single crystal XRD data in order to simulate the NMR, infrared and Raman spectra of the molecule, and performs the signals attribution

    Decline in subarachnoid haemorrhage volumes associated with the first wave of the COVID-19 pandemic

    Get PDF
    BACKGROUND: During the COVID-19 pandemic, decreased volumes of stroke admissions and mechanical thrombectomy were reported. The study\u27s objective was to examine whether subarachnoid haemorrhage (SAH) hospitalisations and ruptured aneurysm coiling interventions demonstrated similar declines. METHODS: We conducted a cross-sectional, retrospective, observational study across 6 continents, 37 countries and 140 comprehensive stroke centres. Patients with the diagnosis of SAH, aneurysmal SAH, ruptured aneurysm coiling interventions and COVID-19 were identified by prospective aneurysm databases or by International Classification of Diseases, 10th Revision, codes. The 3-month cumulative volume, monthly volumes for SAH hospitalisations and ruptured aneurysm coiling procedures were compared for the period before (1 year and immediately before) and during the pandemic, defined as 1 March-31 May 2020. The prior 1-year control period (1 March-31 May 2019) was obtained to account for seasonal variation. FINDINGS: There was a significant decline in SAH hospitalisations, with 2044 admissions in the 3 months immediately before and 1585 admissions during the pandemic, representing a relative decline of 22.5% (95% CI -24.3% to -20.7%, p\u3c0.0001). Embolisation of ruptured aneurysms declined with 1170-1035 procedures, respectively, representing an 11.5% (95%CI -13.5% to -9.8%, p=0.002) relative drop. Subgroup analysis was noted for aneurysmal SAH hospitalisation decline from 834 to 626 hospitalisations, a 24.9% relative decline (95% CI -28.0% to -22.1%, p\u3c0.0001). A relative increase in ruptured aneurysm coiling was noted in low coiling volume hospitals of 41.1% (95% CI 32.3% to 50.6%, p=0.008) despite a decrease in SAH admissions in this tertile. INTERPRETATION: There was a relative decrease in the volume of SAH hospitalisations, aneurysmal SAH hospitalisations and ruptured aneurysm embolisations during the COVID-19 pandemic. These findings in SAH are consistent with a decrease in other emergencies, such as stroke and myocardial infarction

    Analytical HPLC used LiChrospher 60 RP column and eluted with potassium phosphate

    No full text
    <p>. (A) Standard EPI (20 µg/mL), (B) Standard pilocarpine (50 µg/mL), (C) “cultivated jaborandi leaves” solution, resulted from first extraction step, (D) “cultivated jaborandi acid” solution, obtained EPI under salt form, (E) Solution of “crude EPI” with some impurities as pilocarpine and other alkaloids, (F) last step of isolation showing EPI >98% purity.</p

    Mass spectrum obtained from ESI+/Ion Trap.

    No full text
    <p>(A) free EPI with a pseudo molecular ion m/z 287.1 Da [M+H]<sup>+</sup>, (B) MS<sup>2</sup> with characteristic fragment at m/z 269.1 Da [M – H<sub>2</sub>O + H]<sup>+</sup>, (C) MS<sup>3</sup> with fragments at m/z 251.0 Da [M – 2H<sub>2</sub>O + H<sup>+</sup>] and 168.06 Da with proposed chemical structure.</p

    Infrared (IR) and Raman wavenumbers (cm<sup>−1</sup>) of solid state EPI.

    No full text
    <p>Calculated vibrational wavenumbers (cm-1) for the isolated EPI molecule. A tentative assignment of the observed vibrational modes is also shown. See text for theoretical details. ν =  stretching, δ =  bending, β =  bending in plane, γ =  bending out of plane, r =  rocking, τ =  twist, sc =  scissoring, ω =  wagging, νs =  symmetric stretching, νa =  antisymmetric stretching, sh  =  shoulder.</p
    corecore