20 research outputs found

    Computational design of substrate selective inhibition.

    No full text
    Most enzymes act on more than a single substrate. There is frequently a need to block the production of a single pathogenic outcome of enzymatic activity on a substrate but to avoid blocking others of its catalytic actions. Full blocking might cause severe side effects because some products of that catalysis may be vital. Substrate selectivity is required but not possible to achieve by blocking the catalytic residues of an enzyme. That is the basis of the need for "Substrate Selective Inhibitors" (SSI), and there are several molecules characterized as SSI. However, none have yet been designed or discovered by computational methods. We demonstrate a computational approach to the discovery of Substrate Selective Inhibitors for one enzyme, Prolyl Oligopeptidase (POP) (E.C 3.4.21.26), a serine protease which cleaves small peptides between Pro and other amino acids. Among those are Thyrotropin Releasing Hormone (TRH) and Angiotensin-III (Ang-III), differing in both their binding (Km) and in turnover (kcat). We used our in-house "Iterative Stochastic Elimination" (ISE) algorithm and the structure-based "Pharmacophore" approach to construct two models for identifying SSI of POP. A dataset of ~1.8 million commercially available molecules was initially reduced to less than 12,000 which were screened by these models to a final set of 20 molecules which were sent for experimental validation (five random molecules were tested for comparison). Two molecules out of these 20, one with a high score in the ISE model, the other successful in the pharmacophore model, were confirmed by in vitro measurements. One is a competitive inhibitor of Ang-III (increases its Km), but non-competitive towards TRH (decreases its Vmax)

    Molecular Cloning and Expression of Mn(2+)-Dependent Sphingomyelinase/Hemolysin of an Aquatic Bacterium, Pseudomonas sp. Strain TK4

    No full text
    We report here the molecular cloning and expression of a hemolytic sphingomyelinase from an aquatic bacterium, Pseudomonas sp. strain TK4. The sphingomyelinase gene was found to consist of 1,548 nucleotides encoding 516 amino acid residues. The recombinant 57.7-kDa enzyme hydrolyzed sphingomyelin but not phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylethanolamine, indicating that the enzyme is a sphingomyelin-specific sphingomyelinase C. The hydrolysis of sphingomyelin by the enzyme was found to be most efficient at pH 8.0 and activated by Mn(2+). The enzyme shows quite a broad specificity, i.e., it hydrolyzed 4-nitrobenz-2-oxa-1,3-diazole (NBD)-sphingomyelin with short-chain fatty acids and NBD-sphingosylphosphorylcholine, the latter being completely resistant to hydrolysis by any sphingomyelinase reported so far. Significant sequence similarities were found in sphingomyelinases from Bacillus cereus, Staphylococcus aureus, Listeria ivanovii, and Leptospira interrogans, as well as a hypothetical protein encoded in Chromobacterium violaceum, although the first three lacked one-third of the sequence corresponding to that from the C terminus of the TK4 enzyme. Interestingly, the deletion mutant of strain TK4 lacking 186 amino acids at the C-terminal end hydrolyzed sphingomyelin, whereas it lost all hemolytic activity, indicating that the C-terminal region of the TK4 enzyme is indispensable for the hemolytic activity

    Effect of Dehydroaltenusin-C12 Derivative, a Selective DNA Polymerase α Inhibitor, on DNA Replication in Cultured Cells

    No full text
    Dehydroaltenusin is a selective inhibitor of mammalian DNA polymerase α (pol α) from a fungus (Alternaria tennuis). We have designed, synthesized, and characterized a derivative of dehydroaltenusin conjugated with a C12-alkyl side chain (dehydroaltenusin-C12 [C12]). C12 was the strongest pol α inhibitor in vitro. We introduced C12 into NIH3T3 cells with the help of a hypotonic shift, that is, a transient exposure of cultured cells in hypotonic buffer with small molecules which can not penetrate cells. The cells that took in C12 by hypotonic shift showed cell growth inhibition. At a low concentration (5 μM), DNA replication was inhibited and several large replication protein A (RPA) foci, which is different from dUTP foci. Furthermore, when C12 was incubated with aphidicolin, RPA foci were not observed in cells. Finally, these findings suggest that C12 inhibited DNA replication through pol α inhibition, and generated single-stranded DNA, resulted in uncoupling of the leading strand and lagging strand synthesis. These findings suggest that C12 could be more interesting as a molecule probe or anticancer agent than aphidicolin. C12 might provide novel markers for the development of antiproliferative drugs

    Mechanistic Insights into the 1,3-Xylanases: Useful Enzymes for Manipulation of Algal Biomass

    No full text
    Xylanases capable of degrading the crystalline microfibrils of 1,3-xylan that reinforce the cell walls of some red and siphonous green algae have not been well studied, yet they could prove to be of great utility in algaculture for the production of food and renewable chemical feedstocks. To gain a better mechanistic understanding of these enzymes, a suite of reagents was synthesized and evaluated as substrates and inhibitors of an <i>endo</i>-1,3-xylanase. With these reagents, a retaining mechanism was confirmed for the xylanase, its catalytic nucleophile identified, and the existence of −3 to +2 substrate-binding subsites demonstrated. Protein crystal X-ray diffraction methods provided a high resolution structure of a trapped covalent glycosyl–enzyme intermediate, indicating that the 1,3-xylanases likely utilize the <sup>1</sup><i>S</i><sub>3</sub> → <sup>4</sup><i>H</i><sub>3</sub> → <sup>4</sup><i>C</i><sub>1</sub> conformational itinerary to effect catalysis

    Possible Involvement of Pseudomonas Sphingolipid Ceramide N-deacylase in Red Spot Disease of Eels 

    No full text
    The concept of intersection was introduced into relationships between forage production and ruminant production by premising equality in the amount between forage yield (kg/a) and cumulative forage intake (kg/head). Some relationships were given through the mutual transformation of two units (kg/a↔kg/head) at the intersection. (i) There was a relation of ruminant growth period (d_F) to forage yield (kg/a) through daily intake (kg/a/d_R), and forage growth period (d_F) was related to cumulative forage intake (kg/head) through the unit (kg/head/d_F) that was shown for both forage growth rate and rough estimate of assimilation rate. (ii) The animal (head) was related to the field (a) through the unit (a/head) shown for each of feed efficiency, forage digestibility and the ratio of the amount of animal excreta to forage yield, this ratio showed the return of excreta to the field. (iii) The intersection led to either of forage and ruminant production analyses. (iv)When entering the ruminant production analysis from the forage production analysis, there was a pair appearance of feed efficiency and feed conversion, followed by its pair disappearance. The present study suggested field-forage-ruminant relationships

    ANGPTL2 activity in cardiac pathologies accelerates heart failure by perturbing cardiac function and energy metabolism

    Get PDF
    A cardioprotective response that alters ventricular contractility or promotes cardiomyocyte enlargement occurs with increased workload in conditions such as hypertension. When that response is excessive, pathological cardiac remodelling occurs, which can progress to heart failure, a leading cause of death worldwide. Mechanisms underlying this response are not fully understood. Here, we report that expression of angiopoietin-like protein 2 (ANGPTL2) increases in pathologically-remodeled hearts of mice and humans, while decreased cardiac ANGPTL2 expression occurs in physiological cardiac remodelling induced by endurance training in mice. Mice overexpressing ANGPTL2 in heart show cardiac dysfunction caused by both inactivation of AKT and sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a signalling and decreased myocardial energy metabolism. Conversely, Angptl2 knockout mice exhibit increased left ventricular contractility and upregulated AKT-SERCA2a signalling and energy metabolism. Finally, ANGPTL2-knockdown in mice subjected to pressure overload ameliorates cardiac dysfunction. Overall, these studies suggest that therapeutic ANGPTL2 suppression could antagonize development of heart failure
    corecore