107 research outputs found
Development of a beam propagation method to simulate the point spread function degradation in scattering media
Scattering is one of the main issues that limit the imaging depth in deep tissue optical imaging. To characterize the role of scattering, we have developed a forward model based on the beam propagation method and established the link between the macroscopic optical properties of the media and the statistical parameters of the phase masks applied to the wavefront. Using this model, we have analyzed the degradation of the point-spread function of the illumination beam in the transition regime from ballistic to diffusive light transport. Our method provides a wave-optic simulation toolkit to analyze the effects of scattering on image quality degradation in scanning microscopy. Our open-source implementation is available at https://github.com/BUNPC/Beam-Propagation-Method.Accepted manuscrip
Pulsed ultrasound modulated optical tomography utilizing the harmonic response of lock-in detection
Ultrasound modulated optical tomography (USMOT) can image the optical properties of a scattering
medium at a spatial resolution approaching that of ultrasound (US). A lock-in parallel speckle detection
technique is proposed to detect pulsed US modulated light using a multipixel detector. The frequency
components of the pass band match those of the US pulse train and provide efficient detection. The modulation
depth is extracted by taking the difference between a pair of speckle patterns modulated by a pair
of phase-inversed US bursts. Modification to pulse inversion mode enables the second harmonic US
modulation due to nonlinear US propagation to be detected. © 2013 Optical Society of America
OCIS codes: (110.6150) Speckle imaging; (110.0113) Imaging through turbid media
In Vivo Imaging of Cerebral Energy Metabolism with Two-Photon Fluorescence Lifetime Microscopy of NADH
Minimally invasive, specific measurement of cellular energy metabolism is crucial for understanding cerebral pathophysiology. Here, we present high-resolution, in vivo observations of autofluorescence lifetime as a biomarker of cerebral energy metabolism in exposed rat cortices. We describe a customized two-photon imaging system with time correlated single photon counting detection and specialized software for modeling multiple-component fits of fluorescence decay and monitoring their transient behaviors. In vivo cerebral NADH fluorescence suggests the presence of four distinct components, which respond differently to brief periods of anoxia and likely indicate different enzymatic formulations. Individual components show potential as indicators of specific molecular pathways involved in oxidative metabolism
Atherosclerosis is associated with a decrease in cerebral microvascular blood flow and tissue oxygenation
Chronic atherosclerosis may cause cerebral hypoperfusion and inadequate brain oxygenation, contributing to the progression of cognitive decline. In this study, we exploited two-photon phosphorescence lifetime microscopy to measure the absolute partial pressure of oxygen (PO2) in cortical tissue in both young and old LDLR-/-, hApoB100+/+ mice, spontaneously developing atherosclerosis with age. Capillary red-blood-cell (RBC) speed, flux, hematocrit and capillary diameter were also measured by two-photon imaging of FITC-labelled blood plasma. Our results show positive correlations between RBC speed, flux, diameter and capillary-adjacent tissue PO2. When compared to the young mice, we observed lower tissue PO2, lower RBC speed and flux, and smaller capillary diameter in the old atherosclerotic mice. The old mice also exhibited a higher spatial heterogeneity of tissue PO2, and RBC speed and flux, suggesting a less efficient oxygen extraction
Quantifying the Microvascular Origin of BOLD-fMRI from First Principles with Two-Photon Microscopy and an Oxygen-Sensitive Nanoprobe
The blood oxygenation level-dependent (BOLD) contrast is widely used in functional magnetic resonance imaging (fMRI) studies aimed at investigating neuronal activity. However, the BOLD signal reflects changes in blood volume and oxygenation rather than neuronal activity per se. Therefore, understanding the transformation of microscopic vascular behavior into macroscopic BOLD signals is at the foundation of physiologically informed noninvasive neuroimaging. Here, we use oxygen-sensitive two-photon microscopy to measure the BOLD-relevant microvascular physiology occurring within a typical rodent fMRI voxel and predict the BOLD signal from first principles using those measurements. The predictive power of the approach is illustrated by quantifying variations in the BOLD signal induced by the morphological folding of the human cortex. This framework is then used to quantify the contribution of individual vascular compartments and other factors to the BOLD signal for different magnet strengths and pulse sequences.National Institutes of Health (U.S.) (Grant P41RR14075)National Institutes of Health (U.S.) (Grant R01NS067050)National Institutes of Health (U.S.) (Grant R01NS057198)National Institutes of Health (U.S.) (Grant R01EB000790)American Heart Association (Grant 11SDG7600037)Advanced Multimodal NeuroImaging Training Program (R90DA023427
Recommended from our members
CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation
There are numerous barriers to white matter repair after CNS injury and the underlying mechanisms remain to be
fully understood. In this study, we propose the hypothesis that inflammatory macrophages in damaged white
matter attack oligodendrocyte precursor cells (OPCs) via TLR4 signaling thus interfering with this endogenous
progenitor recovery mechanism. Primary cell culture experiments demonstrate that peritoneal macrophages can
attack and digest OPCs via TLR4 signaling, and this phagocytosis of OPCs can be inhibited by using CD200-Fc to downregulate TLR4. In an in vivo model of white matter ischemia induced by endothelin-1, treatment with D200-Fc suppressed TLR4 expression in peripherally circulating macrophages, thus restraining macrophage phagocytosis of OPCs and leading to improved myelination. Taken together, these findings suggest that deleterious macrophage effects may occur after white matter ischemia, whereby macrophages attack OPCs and interfere with endogenous recovery responses. Targeting this pathway with CD200 may offer a novel therapeutic approach to amplify endogenous OPC-mediated repair of white matter damage in mammalian brain
- …