10 research outputs found

    Cylindrical quantum wires with hydrogen-bonded materials

    Full text link
    Properties of cylindrical quantum wires are analysed in this paper. Energies of elementary excitations as well as one-particle wave functions were found for mentioned structure. For cylindrical quantum wires the temperature of phase transition was found. The behaviour of electric susceptibility in paraelectric phase was investigated.Comment: 10 page

    The cybercrime convention committee's 2017 guidance note on production orders:Unilateralist transborder access to electronic evidence promoted via soft law

    No full text
    This article provides a critical analysis of the Council of Europe Cybercrime Convention Committee's Guidance Note of Production Orders, published on 1 March 2017. The article looks at the legal controversies surrounding production orders with a cross-border element. It explains the Guidance Note's background and origins, the basic provisions in the Cybercrime Convention allowing the law enforcement authorities to order and obtain certain information and discusses the requirements that follow from the relevant provisions of the Convention. This analysis is complemented by four critical remarks on the way the Guidance Note pushes the boundaries of acceptable treaty interpretation on the necessity of the Guidance Note, its position in regard to extraterritorial enforcement jurisdiction and sovereignty, its reticence towards fundamental rights and its refusal to define or clarify the important notion of “subscriber information”. The article argues that unilateralism is not a solution. Instead of soft law plumbing, what is needed is an agreement between sovereign states checked by their constituencies

    Specific quantum mechanical solution of difference equation of hyperbolic type

    No full text
    Difficulties connected to solving difference equations of hyperbolic type were analyzed in this work and discussed in detail. The results are compared to those of the standard wave equation and certain similarities were established. The method of solving the equation is generalized by means of kernel expanded into separable polynomials. The analysis was inspired by some new ideas concerning quantization of time. Two examples are given: excitons and phonons in thin crystalline films. The advanced methodology of Green's function method and the application of this new methodology resulted in a set of interesting conclusions concerning thin film properties. The significance of the obtained spatial dependence of exciton concentration was discussed and it was concluded, on the basis of the found spatial dependence of exciton concentration, that such boundary conditions of a thin molecular film which lead to high exciton concentrations can be determined. It was also concluded that thin films possess high superconductive properties, that physical characteristics of thin films are spatially dependent and that the spatial dependence can be the basis for widening the field of application of nanostructures

    Photon's Structure of Motion

    No full text
    A free photon Hamiltonian is linearized using Pauli's matrices. Based on the correspondence of Pauli's matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an equivalent Hamiltonian, which has been analyzed by the method of Green's functions. The evaluated Green function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton with energy change equal to double energy of photon and for spin change equal to Dirac's constant. Since photon is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was found

    Photon's Structure of Motion

    No full text
    A free photon Hamiltonian is linearized using Pauli's matrices. Based on the correspondence of Pauli's matrices kinematics and the kinematics of spin operators, it has been proved that a free photon integral of motion is a sum of orbital momentum and spin momentum for a half-one spin. Linearized Hamiltonian represents a bilinear form of products of spin and momentum operators. Unitary transformation of this form results in an equivalent Hamiltonian, which has been analyzed by the method of Green's functions. The evaluated Green function has given possibility for interpretation of photon reflection as a transformation of photon to antiphoton with energy change equal to double energy of photon and for spin change equal to Dirac's constant. Since photon is relativistic quantum object the exact determining of its characteristics is impossible. It is the reason for series of experimental works in which photon orbital momentum, which is not integral of motion, was investigated. The exposed theory was compared to the mentioned experiments and in some elements the satisfactory agreement was found

    Phonon Contribution in Thermodynamics οf Nano-Crystalline Films and Wires

    No full text
    Spectra of possible phonon states, as well as thermodynamic characteristics of nanocrystals (ultrathin film and quantum wire) of simple cubic crystalline structure are analyzed in this paper, using the method of two-time dependent Green functions. From energy spectra and internal energy of the system the thermal capacitance of these structures in low temperature region is found. The temperature behavior of specific heat is compared to that of corresponding bulk structure. It is shown that at extremely low temperatures thermal capacitance of quantum wire is considerably lower than the thermal capacitance of film as well as the bulk sample. Consequences of this fact are discussed in detail and its influence to thermodynamic properties of materials is estimated

    Phonon Contribution in Thermodynamics οf Nano-Crystalline Films and Wires

    No full text
    Spectra of possible phonon states, as well as thermodynamic characteristics of nanocrystals (ultrathin film and quantum wire) of simple cubic crystalline structure are analyzed in this paper, using the method of two-time dependent Green functions. From energy spectra and internal energy of the system the thermal capacitance of these structures in low temperature region is found. The temperature behavior of specific heat is compared to that of corresponding bulk structure. It is shown that at extremely low temperatures thermal capacitance of quantum wire is considerably lower than the thermal capacitance of film as well as the bulk sample. Consequences of this fact are discussed in detail and its influence to thermodynamic properties of materials is estimated

    HEAT CONDUCTIVITY OF SOME LAYERED STRUCTURES

    No full text
    Callaway model with Debye’s approximation of phonon states density is used to determine heat conductivity of some layered structures of Nb1-x Snx Se2 type. In total relaxation time, a term proportional to squared frequency, typical for layered structures, is kept. Electronic heat conductivity is determined by Wiedemann–Franz law and BRT model for superconductors. In both cases, heat conductivity is determined numerically in the range of 2 – 200 K. Results correlate well with experimental data.Callaway model with Debye’s approximation of phonon states density is used to determine heat conductivity of some layered structures of Nb1-x Snx Se2 type. In total relaxation time, a term proportional to squared frequency, typical for layered structures, is kept. Electronic heat conductivity is determined by Wiedemann–Franz law and BRT model for superconductors. In both cases, heat conductivity is determined numerically in the range of 2 – 200 K. Results correlate well with experimental data
    corecore