49 research outputs found

    The miR-17-92 cluster counteracts quiescence and chemoresistance in a distinct subpopulation of pancreatic cancer stem cells

    Get PDF
    Objective Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. Design Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. Results We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-beta 1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. Conclusions Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.CH: ERC Advanced Investigator Grant (Pa-CSC 233460), European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement No 256974 (EPC-TM-NET) and No 602783 (CAM-PaC), the Subdireccion General de Evaluacion y Fomento de la Investigacion, Fondo de Investigacion Sanitaria (PS09/02129 \& PI12/02643), and the Programa Nacional de Internacionalizacion de la I+D, Subprogramma: FCCI 2009 (PLE2009-0105; Ministerio de Economia y Competitividad, Spain). MC: La Caixa Predoctoral Fellowship.S

    Exploiting oxidative phosphorylation to promote the stem and immunoevasive properties of pancreatic cancer stem cells

    Get PDF
    © The Author(s) 2020Pancreatic ductal adenocarcinoma (PDAC), the fourth leading cause of cancer death, has a 5-year survival rate of approximately 7–9%. The ineffectiveness of anti-PDAC therapies is believed to be due to the existence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are functionally plastic, and have exclusive tumorigenic, chemoresistant and metastatic capacities. Herein, we describe a 2D in vitro system for long-term enrichment of pancreatic CSCs that is amenable to biological and CSC-specific studies. By changing the carbon source from glucose to galactose in vitro, we force PDAC cells to utilize OXPHOS, resulting in enrichment of CSCs defined by increased CSC biomarker and pluripotency gene expression, greater tumorigenic potential, induced but reversible quiescence, increased OXPHOS activity, enhanced invasiveness, and upregulated immune evasion properties. This CSC enrichment method can facilitate the discovery of new CSC-specific hallmarks for future development into targets for PDAC-based therapies.We acknowledge and thank Dr. Nuria Malats and Jaime Villarreal from the Spanish National Cancer Research Center (CNIO) for RNA sequencing and analysis, funded by Fondo de Investigaciones Sanitarias (FIS) grant PI18/01347. We thank Patricia Sánchez-Tomero and Marina Ochando-Garmendia for technical assistance and support and Dr. Raúl Sánchez Lanzas for assistance with autophagy experiments. We want to particularly acknowledge the patients and the BioBank Hospital Ramón y Cajal-IRYCIS (PT13/0010/0002) integrated in the Spanish National Biobanks Network for its collaboration and, in particular, Adrián Povo Retana for macrophage isolation. We would also like to thank the Transmission Electron Microscopy Unit Laboratory, part of the UAM Interdepartmental Investigation Service (SIdI); Coral Pedrero for exceptional help with in vivo experiments; and the laboratories of Dr. Amparo Cano and Dr. José González Castaño for reagents and helpful discussions. S.V. was a recipient of an Ayuda de Movilidad del Personal Investigador del IRYCIS, a mobility grant from the Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, and a pre-doctoral fellowship from the Comunidad de Madrid, Ayudas Para La Contratación De Investigadores Predoctorales Y Posdoctorales (PEJD-2017-PRE/BMD-5062), Madrid, Spain. This study was supported by a Rámon y Cajal Merit Award (RYC-2012-12104) from the Ministerio de Economía y Competitividad, Spain (to B.S.); funding from la Beca Carmen Delgado/Miguel Pérez-Mateo from AESPANC-ACANPAN Spain (to B.S.); a Conquer Cancer Now Grant from the Concern Foundation (Los Angeles, CA, USA) (to B.S.); a Coordinated grant (GC16173694BARB) from the Fundación Asociación Española Contra el Cáncer (AECC) (to B.S.); FIS grants PI18/00757 (to B.S.), PI16/00789 (to M.A.F.-M.), PI18/00267 (to L.G.-B.; co-financed through Fondo Europeo de Desarrollo Regional (FEDER) “Una manera de hacer Europa”); a Miguel Servet award (CP16/00121) (to P.S.); a Max Eder Fellowship of the German Cancer Aid (111746) (to P.C.H.); and the German Research Foundation (DFG, CRC 1279 “Exploiting the human peptidome for Novel Antimicrobial and Anticancer Agents”; to P.C.H.)

    Hepatitis C Virus Infection in Phenotypically Distinct Huh7 Cell Lines

    Get PDF
    In 2005, the first robust hepatitis C virus (HCV) infectious cell culture system was developed based on the HCV genotype 2a JFH-1 molecular clone and the human-derived hepatoma cell line Huh7. Although much effort has been made to dissect and expand the repertoire of JFH-1-derived clones, less attention has been given to the host cell despite the intriguing facts that thus far only Huh7 cells have been found to be highly permissive for HCV infection and furthermore only a limited number of Huh7 cell lines/stocks appear to be fully permissive. As such, we compiled a panel of Huh7 lines from disparate sources and evaluated their permissiveness for HCV infection. We found that although Huh7 lines from different laboratories do vary in morphology and cell growth, the majority (8 out of 9) were highly permissive for infection, as demonstrated by robust HCV RNA and de novo infectious virion production following infection. While HCV RNA levels achieved in the 8 permissive cell lines were relatively equivalent, three Huh7 lines demonstrated higher infectious virion production suggesting these cell lines more efficiently support post-replication event(s) in the viral life cycle. Consistent with previous studies, the single Huh7 line found to be relatively resistant to infection demonstrated a block in HCV entry. These studies not only suggest that the majority of Huh7 cell lines in different laboratories are in fact highly permissive for HCV infection, but also identify phenotypically distinct Huh7 lines, which may facilitate studies investigating the cellular determinants of HCV infection

    LAMC2 marks a tumor-initiating cell population with an aggressive signature in pancreatic cancer

    Get PDF
    [Background]: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood.[Methods]: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-β) signaling.[Results]: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-β signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-β type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells.[Conclusions]: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.This work was supported by: Marie Curie IF (H2020-MSCA-IF-2015, #703753), My First AIRC Grant (MFAG-2017, #20206), POR Campania FESR 2014/2020 (Project SATIN) to E.L.; AIRC IG grant 2018 n.21420 to A.D.L.; FIMP to D.D.C.; AECC (Proye18046BATL_002) to E.B.; My First AIRC Grant (MFAG grant #23029), WorldWide Cancer Research (Research grant #20–0188), EASI Genomics consortium (TNA project #15158) and the World Cancer Research Fund (Seed grant #2021–1769) to A.C

    Saa3 is a key mediator of the protumorigenic properties of cancer-associated fibroblasts in pancreatic tumors

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by the presence of abundant desmoplastic stroma primarily composed of cancer-associated fibroblasts (CAFs). It is generally accepted that CAFs stimulate tumor progression and might be implicated in drug resistance and immunosuppression. Here, we have compared the transcriptional profile of PDGFRα+ CAFs isolated from genetically engineered mouse PDAC tumors with that of normal pancreatic fibroblasts to identify genes potentially implicated in their protumorigenic properties. We report that the most differentially expressed gene, Saa3, a member of the serum amyloid A (SAA) apolipoprotein family, is a key mediator of the protumorigenic activity of PDGFRα+ CAFs. Whereas Saa3-competent CAFs stimulate the growth of tumor cells in an orthotopic model, Saa3-null CAFs inhibit tumor growth. Saa3 also plays a role in the cross talk between CAFs and tumor cells. Ablation of Saa3 in pancreatic tumor cells makes them insensitive to the inhibitory effect of Saa3-null CAFs. As a consequence, germline ablation of Saa3 does not prevent PDAC development in mice. The protumorigenic activity of Saa3 in CAFs is mediated by Mpp6, a member of the palmitoylated membrane protein subfamily of the peripheral membrane-associated guanylate kinases (MAGUK). Finally, we interrogated whether these observations could be translated to a human scenario. Indeed, SAA1, the ortholog of murine Saa3, is overexpressed in human CAFs. Moreover, high levels of SAA1 in the stromal component correlate with worse survival. These findings support the concept that selective inhibition of SAA1 in CAFs may provide potential therapeutic benefit to PDAC patients.This work was supported by European Research Council Grants ERC-AG/250297-RAS AHEAD and ERC-AG/695566-THERACAN, Spanish Ministry of Economy and Competitiveness Grant SAF2014-59864-R, and Asociación Española contra el Cáncer Grant GC16173694BARB (to M. Barbacid). M.D. was supported by a fellowship from La Caixa International Fellowship Program. M. Barbacid is the recipient of an Endowed Chair from the AXA Research Fund

    Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival

    Get PDF
    © 2021 by the authors.Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there are many areas for improvement in diagnostics and patient management. The five-year survival rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that is treatment resistant. Approximately 10–15% of PDAC cases have a hereditary basis or Familial Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months, respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although here we demonstrate that there are different subtypes of tumors at the genetic level that could pave the way to personalized treatment.This study was funded by the Instituto de Salud Carlos III (Plan Estatal de I+D+i 2013– 2016): ISCIII (PI09/02221, PI12/01635, PI15/02101, and PI18/0135) and co-financed by the European Development Regional Fund “A way to achieve Europe” (ERDF), the Biomedical Research Network in Cancer: CIBERONC (CB16/12/00446), Red Temática de investigación cooperativa en cáncer: RTICC (RD12/0036/0073), La Asociación Española contra el Cáncer: AECC (Grupos Coordinados Estables 2016), Fundación Mutua Madrileña (FMM) / XVI Convocatoria de Ayudas a la Investigación en Salud 2019 and Asociación Cáncer de Páncreas (ACanPan); Asociación Española de Pancreatología (AESPANC) / IV Becas de Investigación Carmen Delgado/Miguel Pérez-Mateo 2019. The European Union’s Horizon 2020 research and innovation program under grant agreement No 857381, project VISION (Strategies to strengthen scientific excellence and innovation capacity for early diagnosis of gastrointestinal cancers).Peer reviewe

    Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer

    Get PDF
    Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.This work was funded by the American Association for Cancer Research, Lustgarten Foundation, and Stand Up to Cancer as a Pancreatic Cancer Collective New Therapies Challenge grant (grant no. SU2C-AACR-PCC-01-18)

    Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes

    Get PDF
    [Background & Aims]: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. [Methods]: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. [Results]: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. [Conclusions]: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.This work was supported by the Deutsche Forschungsgemeinschaft (grants AL 1174/4-1, AL1174/4-2, and Collaborative Research Center 1321 “Modeling and Targeting Pancreatic Cancer” to Hana Algül; SFB824 Z2 to Katja Steiger), the Deutsche Krebshilfe (grant 111646 to Hana Algül), a Ramon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (to Bruno Sainz Jr), a Coordinated Grant from Fundación Asociación Española Contra el Cáncer (GC16173694BARB to Bruno Sainz Jr), funding from The Fero Foundation (to Bruno Sainz Jr), and a Proyecto de Investigacion de Salud, ISCIII, Spain (no. PI18/00757 to Bruno Sainz Jr). Jiaoyu Ai is supported by the “China Scholarship Council” grant program

    Levels of the Autophagy-Related 5 Protein Affect Progression and Metastasis of Pancreatic Tumors in Mice

    Get PDF
    [Background and Aims]: Cells in pancreatic ductal adenocarcinoma (PDAC) undergo autophagy, but its effects vary with tumor stage and genetic factors. We investigated the consequences of varying levels of the autophagy related 5 (Atg5) protein on pancreatic tumor formation and progression. [Methods]: We generated mice that express oncogenic Kras in primary pancreatic cancer cells and have homozygous disruption of Atg5 (A5;Kras) or heterozygous disruption of Atg5 (A5+/–;Kras), and compared them with mice with only oncogenic Kras (controls). Pancreata were analyzed by histology and immunohistochemistry. Primary tumor cells were isolated and used to perform transcriptome, metabolome, intracellular calcium, extracellular cathepsin activity, and cell migration and invasion analyses. The cells were injected into wild-type littermates, and orthotopic tumor growth and metastasis were monitored. Atg5 was knocked down in pancreatic cancer cell lines using small hairpin RNAs; cell migration and invasion were measured, and cells were injected into wild-type littermates. PDAC samples were obtained from independent cohorts of patients and protein levels were measured on immunoblot and immunohistochemistry; we tested the correlation of protein levels with metastasis and patient survival times. [Results]: A5+/–;Kras mice, with reduced Atg5 levels, developed more tumors and metastases, than control mice, whereas A5;Kras mice did not develop any tumors. Cultured A5+/–;Kras primary tumor cells were resistant to induction and inhibition of autophagy, had altered mitochondrial morphology, compromised mitochondrial function, changes in intracellular Ca2+ oscillations, and increased activity of extracellular cathepsin L and D. The tumors that formed in A5+/–;Kras mice contained greater numbers of type 2 macrophages than control mice, and primary A5+/–;Kras tumor cells had up-regulated expression of cytokines that regulate macrophage chemoattraction and differentiation into M2 macrophage. Knockdown of Atg5 in pancreatic cancer cell lines increased their migratory and invasive capabilities, and formation of metastases following injection into mice. In human PDAC samples, lower levels of ATG5 associated with tumor metastasis and shorter survival time. [Conclusions]: In mice that express oncogenic Kras in pancreatic cells, heterozygous disruption of Atg5 and reduced protein levels promotes tumor development, whereas homozygous disruption of Atg5 blocks tumorigenesis. Therapeutic strategies to alter autophagy in PDAC should consider the effects of ATG5 levels to avoid the expansion of resistant and highly aggressive cells.This study was supported in part by the Mildred-Scheel-Professur der Deutschen Krebshilfe 111464, DFG AL 1174/6-1 to H.A., DFG DI 2299/1-1 to K.N.D., DFG SFB1321 (S01) to K.S. and W.W., and the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.) to J.A
    corecore