1,092 research outputs found

    Simulating geometric uncertainties of impervious areas based on image segmentation accuracy metrics

    Get PDF
    International audienceUrban sprawl monitoring is important for developing land management policies at various spatial scales. Segmentation and classification of satellite images allows obtaining polygons of impervious areas regularly over large areas, e.g. as has been implemented for the region Languedoc‐Roussillon in the south of France using 5 m RapidEye images. Starting from the results of this previous study, we aim to: i) evaluate the geometric and thematic accuracy of the impervious polygons (S) using segmentation accuracy metrics, and ii) use these metrics to simulate polygons having the same level of uncertainty. A manual segmentation (M) was used to evaluate the accuracy. After matching the polygons, the distance (d) and azimuth (a) of each vertex of M to the closest segment of the boundary of S was calculated. Spherically correlated random fields of d and a were used to randomly move the vertices of S. Realistic simulations of impervious polygons were obtained

    Energy and angular momentum sharing in dissipative collisions

    Full text link
    Primary and secondary masses of heavy reaction products have been deduced from kinematics and E-ToF measurements, respectively, for the direct and reverse collisions of 93Nb and 116Sn at 25 AMeV. Light charged particles have also been measured in coincidence with the heavy fragments. Direct experimental evidence of the correlation of energy-sharing with net mass transfer has been found using the information from both the heavy fragments and the light charged particles. The ratio of Hydrogen and Helium multiplicities points to a further correlation of angular momentum sharing with net mass transfer.Comment: 21 pages, 20 figures. Submitted to European Physics Journal

    Tumour growth and resistance to gemcitabine of pancreatic cancer cells are decreased by AP-2α overexpression

    Get PDF
    International audienceBACKGROUND: Activator protein-2alpha (AP-2alpha) is a transcription factor that belongs to the family of AP-2 proteins that have essential roles in tumorigenesis. Indeed, AP-2alpha is considered as a tumour-suppressor gene in different tissues such as colonic, prostatic or breast epithelial cells. Moreover, AP-2alpha also participates in the control of colon and breast cancer cells sensitivity towards chemotherapeutic drugs. Despite its potential interest, very few data are available regarding the roles of AP-2alpha in pancreatic cancer. METHODS: We have developed a stable pancreatic CAPAN-1 cell line overexpressing AP-2alpha. Consequences of overexpression were studied in terms of in vivo cell growth, gene expression, migration capacity and chemosensitivity. RESULTS: In vivo tumour growth of CAPAN-1 cells overexpressing AP-2alpha was significantly decreased by comparison to control cells. An altered expression pattern of cell cycle-controlling factors (CDK-4, CDK-6, cyclin-G1, p27(kip1) and p57(kip2)) was observed in AP-2alpha-overexpressing clones by microarrays and western blot analysis. Promoter activity and ChIP analysis indicated that AP-2alpha induces p27(kip1) protein levels by direct binding to and transactivation of its promoter. Moreover, AP-2alpha overexpression increased the chemosensitivity of CAPAN-1 cells to low doses of gemcitabine and reduced their in vitro migration capacity. CONCLUSION: Our data suggested that AP-2alpha overexpression could be exploited to decrease in vivo tumour growth of pancreatic cancer cells and to increase their sensitivity to gemcitabine

    One-neutron removal reactions on neutron-rich psd-shell nuclei

    Full text link
    A systematic study of high energy, one-neutron removal reactions on 23 neutron-rich, psd--shell nuclei (Z=5-9, A=12-25) has been carried out. The longitudinal momentum distributions of the core fragments and corresponding single-neutron removal cross sections are reported for reactions on a carbon target. Extended Glauber model calculations, weighted by the spectroscopic factors obtained from shell model calculations, are compared to the experimental results. Conclusions are drawn regarding the use of such reactions as a spectroscopic tool and spin-parity assignments are proposed for 15B, 17C, 19-21N, 21,23O, 23-25F. The nature of the weakly bound systems 14B and 15,17C is discussed.Comment: 11 pages + 2 figure

    One-neutron removal reactions on light neutron-rich nuclei

    Full text link
    A study of high energy (43--68 MeV/nucleon) one-neutron removal reactions on a range of neutron-rich psd-shell nuclei (Z = 5--9, A = 12--25) has been undertaken. The inclusive longitudinal and transverse momentum distributions for the core fragments, together with the cross sections have been measured for breakup on a carbon target. Momentum distributions for reactions on tantalum were also measured for a subset of nuclei. An extended version of the Glauber model incorporating second order noneikonal corrections to the JLM parametrisation of the optical potential has been used to describe the nuclear breakup, whilst the Coulomb dissociation is treated within first order perturbation theory. The projectile structure has been taken into account via shell model calculations employing the psd-interaction of Warburton and Brown. Both the longitudinal and transverse momentum distributions, together with the integrated cross sections were well reproduced by these calculations and spin-parity assignments are thus proposed for 15^{15}B, 17^{17}C, 1921^{19-21}N, 21,23^{21,23}O, 2325^{23-25}F. In addition to the large spectroscopic amplitudes for the ν2\nu2s1/2_{1/2} intruder configuration in the N=9 isotones,14^{14}B and 15^{15}C, significant ν2\nu2s1/22_{1/2}^2 admixtures appear to occur in the ground state of the neighbouring N=10 nuclei 15^{15}B and 16^{16}C. Similarly, crossing the N=14 subshell, the occupation of the ν2\nu2s1/2_{1/2} orbital is observed for 23^{23}O, 24,25^{24,25}F. Analysis of the longitudinal and transverse momentum distributions reveals that both carry spectroscopic information, often of a complementary nature. The general utility of high energy nucleon removal reactions as a spectroscopic tool is also examined.Comment: 50 pages, 19 figures, submitted to Phys. Rev.

    Collapse of the N=28 shell closure in 42^{42}Si

    Get PDF
    The energies of the excited states in very neutron-rich 42^{42}Si and 41,43^{41,43}P have been measured using in-beam γ\gamma-ray spectroscopy from the fragmentation of secondary beams of 42,44^{42,44}S at 39 A.MeV. The low 2+^+ energy of 42^{42}Si, 770(19) keV, together with the level schemes of 41,43^{41,43}P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that 42^{42}Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let

    Prolate-Spherical Shape Coexistence at N=28 in 44^{44}S

    Get PDF
    The structure of 44^{44}S has been studied using delayed γ\gamma and electron spectroscopy at \textsc{ganil}. The decay rates of the 02+^+_2 isomeric state to the 21+^+_1 and 01+^+_1 states have been measured for the first time, leading to a reduced transition probability B(E2~:~21+^{+}_1\rightarrow02+)^{+}_2)= 8.4(26)~e2^2fm4^4 and a monopole strength ρ2\rho^2(E0~:~02+^{+}_2\rightarrow01+)^{+}_1) =~8.7(7)×\times103^{-3}. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    ECR Ion sources for radioactive ion beam production

    Get PDF
    17th workshop on ECR Ion Sources and their Applications, Lanzhou, Chine (2006)International audienceECRIS's dedicated to radioactive ion producton must be as efficient as those used for production of stable elements, but in addition they are subject to more specific constraints such as radiation hardness, short atom-to-ion transformation time, beam purity and low cost. Up to now, different target/ion-source system (TISSs) have been designed, using singly-charged ECRISs, multi-charged ion sources or an association of singly-to-multi-charged ECRISs. The main goal, constraints and advantages of different existing ECR setups wil be compared before a more detailed description is given of the one designed for the SPIRAL II project and ist future improvements
    corecore