201 research outputs found

    Bone Lining Cells: Structure and Function

    Get PDF
    Bone lining cells (BLC\u27s) cover inactive (nonremodeling) bone surfaces, particularly evident in the adult skeleton. BLC\u27s are thinly extended over bone surfaces, have flat or slightly ovoid nuclei, connect to other BLC\u27s via gap junctions, and send cell processes into surface canaliculi. BLC\u27s can be induced to proliferate and differentiate into osteogenic cells and may represent a source of determined osteogenic precursors. BLC\u27s and other cells of the endosteal tissues may be an integral part of the marrow stromal system and have important functions in hematopoiesis, perhaps by controlling the inductive microenvironment. Because activation of bone remodeling occurs on inactive bone surfaces, BLC\u27s may be involved in the propagation of the activation signal that initiates bone resorption and bone remodeling. Evidence also suggests that BLC\u27s are important in the maintenance of the bone fluids and the fluxes of ions between the bone fluid and interstitial fluid compartments for mineral homeostasis

    Ultrastructural Features of Osteoclasts In Situ

    Get PDF
    The morphology of in situ osteoclasts on endocortical surfaces of the femoral midshaft was examined by scanning electron microscopy. Mice were perfusion fixed and bone marrow plugs were flushed out of femoral diaphyseal cylinders. The bones were split longitudinally and the endocortical surfaces examined. This method left on the bone surface most of the endosteal cells in their natural, in situ shape and position. Most of the bone surface was lined by contiguous bone lining cells covering resting bone surfaces, making a clear physical barrier between the bone and marrow compartments. On resorption surfaces, which were characterized by excavation cavities, osteoclasts were very polymorphic and spread on the bone surface, extending large pseudopods. The in vivo morphology of individual osteoclasts appears somewhat similar to that described by other investigators on calvaria surfaces and for isolated osteoclasts adherent to artificial substrates. In the resorption domains, osteoclasts appeared to be connected with adjacent osteoclasts, suggesting that the cells form a functional syncytium in resorption areas

    MitoGenesisDB: an expression data mining tool to explore spatio-temporal dynamics of mitochondrial biogenesis

    Get PDF
    Mitochondria constitute complex and flexible cellular entities, which play crucial roles in normal and pathological cell conditions. The database MitoGenesisDB focuses on the dynamic of mitochondrial protein formation through global mRNA analyses. Three main parameters confer a global view of mitochondrial biogenesis: (i) time-course of mRNA production in highly synchronized yeast cell cultures, (ii) microarray analyses of mRNA localization that define translation sites and (iii) mRNA transcription rate and stability which characterize genes that are more dependent on post-transcriptional regulation processes. MitoGenesisDB integrates and establishes cross-comparisons between these data. Several model organisms can be analyzed via orthologous relationships between interspecies genes. More generally this database supports the ‘post-transcriptional operon’ model, which postulates that eukaryotes co-regulate related mRNAs based on their functional organization in ribonucleoprotein complexes. MitoGenesisDB allows identifying such groups of post-trancriptionally regulated genes and is thus a useful tool to analyze the complex relationships between transcriptional and post-transcriptional regulation processes. The case of respiratory chain assembly factors illustrates this point. The MitoGenesisDB interface is available at http://www.dsimb.inserm.fr/dsimb_tools/mitgene/

    Do Parents Recognize Autistic Deviant Behavior Long before Diagnosis? Taking into Account Interaction Using Computational Methods

    Get PDF
    BACKGROUND: To assess whether taking into account interaction synchrony would help to better differentiate autism (AD) from intellectual disability (ID) and typical development (TD) in family home movies of infants aged less than 18 months, we used computational methods. METHODOLOGY AND PRINCIPAL FINDINGS: First, we analyzed interactive sequences extracted from home movies of children with AD (N = 15), ID (N = 12), or TD (N = 15) through the Infant and Caregiver Behavior Scale (ICBS). Second, discrete behaviors between baby (BB) and Care Giver (CG) co-occurring in less than 3 seconds were selected as single interactive patterns (or dyadic events) for analysis of the two directions of interaction (CG→BB and BB→CG) by group and semester. To do so, we used a Markov assumption, a Generalized Linear Mixed Model, and non negative matrix factorization. Compared to TD children, BBs with AD exhibit a growing deviant development of interactive patterns whereas those with ID rather show an initial delay of development. Parents of AD and ID do not differ very much from parents of TD when responding to their child. However, when initiating interaction, parents use more touching and regulation up behaviors as early as the first semester. CONCLUSION: When studying interactive patterns, deviant autistic behaviors appear before 18 months. Parents seem to feel the lack of interactive initiative and responsiveness of their babies and try to increasingly supply soliciting behaviors. Thus we stress that credence should be given to parents' intuition as they recognize, long before diagnosis, the pathological process through the interactive pattern with their child

    The emotional component of Infant Directed-Speech: A cross-cultural study using machine learning

    Get PDF
    Backgrounds: Infant-directed speech (IDS) is part of an interactive loop that plays an important role in infants’ cognitive and social development. The use of IDS is universal and is composed of linguistic and emotional components. However, whether the emotional component has similar acoustics characteristics has not been studied automatically. Methods: We performed a cross-cultural study using automatic social signal processing techniques (SSP) to compare IDS across languages. Our speech corpus consisted of audio-recorded vocalizations from parents during interactions with their infant between the ages of 4 and 18 months. It included 6 databases of five languages: English, French, Hebrew (two databases: mothers/fathers), Italian, and Brazilian Portuguese. We used an automatic classifier that exploits the acoustic characteristics of speech and machine learning methods (Support Vector Machines, SVM) to distinguish emotional IDS and non-emotional IDS. Results: Automated classification of emotional IDS was possible for all languages and speakers (father and mother). The uni-language condition (classifier trained and tested in the same language) produced moderate to excellent classification results, all of which were significantly different from chance (P < 1 × 10−10). More interestingly, the cross-over condition (IDS classifier trained in one language and tested in another language) produced classification results that were all significantly different from chance (P < 1 × 10−10). Conclusion: The automated classification of emotional and non-emotional components of IDS is possible based on the acoustic characteristics regardless of the language. The results found in the cross-over condition support the hypothesis that the emotional component shares similar acoustic characteristics across languages

    Repression of Mitochondrial Translation, Respiration and a Metabolic Cycle-Regulated Gene, SLF1, by the Yeast Pumilio-Family Protein Puf3p

    Get PDF
    Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3′-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity

    CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs

    Get PDF
    Mitochondria are essential organelles that host crucial metabolic pathways and produce adenosine triphosphate. The mitochondrial proteome is heterogeneous among tissues and can dynamically change in response to different metabolic conditions. Although the transcriptional programs that govern mitochondrial biogenesis and respiratory function are well known, posttranscriptional regulatory mechanisms remain unclear. In this study, we show that the cytosolic RNA-binding protein clustered mitochondria homologue (CLUH) regulates the expression of a mitochondrial protein network supporting key metabolic programs required under nutrient deprivation. CLUH exerts its function by controlling the stability and translation of target messenger RNAs. In the absence of Cluh, mitochondria are severely depleted of crucial enzymes involved in catabolic energy-converting pathways. CLUH preserves oxidative mitochondrial function and glucose homeostasis, thus preventing death at the fetal–neonatal transition. In the adult liver, CLUH ensures maximal respiration capacity and the metabolic response to starvation. Our results shed new light on the posttranscriptional mechanisms controlling the expression of mitochondrial proteins and suggest novel strategies to tailor mitochondrial function to physiological and pathological conditions.Peer reviewe

    Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs

    Get PDF
    Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra-or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance: Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype

    Frühe Auffälligkeiten in Motorik, Sprache und Kommunikation bei Rett-Syndrom

    Full text link
    The dynamic course of Rett syndrome (RTT) is still said to begin with a period of apparently normal development although there is mounting evidence that individuals with RTT show behavioural peculiarities and abnormalities during their infancy. Their spontaneous general movements are abnormal from birth onwards. Normal cooing vocalisation and canonical babbling (if at all required) are interspersed with abnormalities such as proto-vowel and proto-consonant alternations produced on ingressive airstream, breathy voice characteristics, and pressed or high-pitched vocalisations. The gestural repertoire is limited. Certain developmental motor and speech-language milestones are not at all acquired or show a significant delay. Besides abnormal blinking, repetitive and/or long lasting tongue protrusion, and bizarre smiling, there are already the first body and/or hand stereotypies during the first year of life. We are currently on a promising way to define a specific set of behavioural biomarkers pinpointing RTT
    corecore