65 research outputs found
X-ray Linear Dichroism in cubic compounds: the case of Cr3+ in MgAl2O4
The angular dependence (x-ray linear dichroism) of the Cr K pre-edge in
MgAl2O4:Cr3+ spinel is measured by means of x-ray absorption near edge
structure spectroscopy (XANES) and compared to calculations based on density
functional theory (DFT) and ligand field multiplet theory (LFM). We also
present an efficient method, based on symmetry considerations, to compute the
dichroism of the cubic crystal starting from the dichroism of a single
substitutional site. DFT shows that the electric dipole transitions do not
contribute to the features visible in the pre-edge and provides a clear vision
of the assignment of the 1s-->3d transitions. However, DFT is unable to
reproduce quantitatively the angular dependence of the pre-edge, which is, on
the other side, well reproduced by LFM calculations. The most relevant factors
determining the dichroism of Cr K pre-edge are identified as the site
distortion and 3d-3d electronic repulsion. From this combined DFT, LFM approach
is concluded that when the pre-edge features are more intense than 4 % of the
edge jump, pure quadrupole transitions cannot explain alone the origin of the
pre-edge. Finally, the shape of the dichroic signal is more sensitive than the
isotropic spectrum to the trigonal distortion of the substitutional site. This
suggests the possibility to obtain quantitative information on site distortion
from the x-ray linear dichroism by performing angular dependent measurements on
single crystals
Determination of the cation site distribution of the spinel in multiferroic CoFe2O4 / BaTiO3 layers by X-ray photoelectron spectroscopy
International audienceThe properties of CoFe2O4/BaTiO3 artificial multiferroic multilayers strongly depend on the crystalline structure, the stoichiometry and the cation distribution between octahedral (Oh) and tetrahedral (Td) sites (inversion factor). In the present study, we have investigated epitaxial CoFe2O4 layers grown on BaTiO3, with different Co/Fe ratios. We determined the cation distribution in our samples by X-ray magnetic circular dichroism (XMCD), a well accepted method to do so, and by X-ray photoelectron spectroscopy (XPS), using a fitting method based on physical considerations. We observed that our XPS approach converged on results consistent with XMCD measurements made on the same samples. Thus, within a careful decomposition based on individual chemical environments it is shown that XPS is fully able to determine the actual inversion factor
Enantiomeric resolution of helicochiral paddlewheel complexes and their infrared, Raman, UV-vis and X-ray optical activity
International audienceLinear polynuclear paddlewheel complexes-"extended metal atom chains" or "metal strings"-have provided attractive models for the study of metal-metal bonding, magnetism and conductivity since their discovery in the 1990s [1]. Their helicoidal chirality, arising from mutual steric hindrance of the 3-pyridyl protons, resulting in the twisting of the equatorial ligand around the metal axis (see figure), has been less studied. Nonetheless, in one of the few examples of chiral resolution, the obtained enantiomers of a trinickel complex showed a remarkably high specific rotation of 5000 deg•mL•g −1 •dm −1 [2], motivating us to seek a general technique for the chiral resolution of such racemates. We have developed a procedure based on anion exchange for the chiral resolution of [M3(dpa)4] 2+ salts (M = Co(II) or Ni(II), Hdpa = 2,2'-dipyridylamine). Homochiral arsenyl tartrate (AsT) salts promoted the selective crystallization of [-M3(dpa)4(MeCN)2](NBu4)2[-AsT]2, or [-M3(dpa)4(MeCN)2](NBu4)2[-AsT]2 in the P4212 space group. The enantiopure compounds demonstrated surprisingly large optical activities using UV-vis, Raman and infrared spectroscopy in solution and, for the cobalt derivatives, in the X-ray range at the Co K-edge in single crystals. An intense X-ray linear dichroism was observed in the orthoaxial crystal orientation, whereas it vanished in the axial confirmation, while the angular dependence of the circular dichroism spectra followed the expected (3cos 2 − 1) function, thus spectroscopically confirming the D4 crystal symmetry. X-ray magnetic circular dichroism and X-ray magnetochiral dichroism signals at the Co K-edge were not detected, likely due to a strongly delocalized spin density on the metal-metal bonded tricobalt core. Nevertheless, these results establish that chiral polynuclear paddlewheel complexes can be cleanly resolved using selective crystallization and demonstrate considerable optical activity in the infrared, UV-vis and X-ray energy ranges, thus potentially offering future perspectives in non-linear optics and asymmetric synthesis [3]
Direct Evidence of the Role of Hybridization in the X-Ray Magnetic Circular Dichroism of a-Ce
We present an x-ray magnetic circular dichroism (XMCD) study of a [Ce(10 Å)/Fe(30 Å)] multilayer
performed at the Ce-M4,5 absorption edges. In this system the Ce-4f electrons are strongly hybridized
with the valence band. XMCD experiments show that they carry an ordered magnetic moment. The
differences of the shape of the XMCD signals of a typical g-like compound (CeCuSi) and of the Ce/
Fe multilayer highlight the role of hybridization in determining the ground state of cerium atoms in the
multilayer, which results in a mixing of J = 5/2 and J = 7/2 coupled states
Atomic-Scale Study of Metal–Oxide Interfaces and Magnetoelastic Coupling in Self-Assembled Epitaxial Vertically Aligned Magnetic Nanocomposites
Vertically aligned nanocomposites (VANs) of metal/oxide type have recently emerged as a novel class of heterostructures with great scientific and technological potential in the fields of nanomagnetism, multiferroism, and catalysis. One of the salient features of these hybrid materials is their huge vertical metal/oxide interface, which plays a key role in determining the final magnetic and/or transport properties of the composite structure. However, in contrast to their well‐studied planar counterparts, detailed information on the structural features of vertical interfaces encountered in VANs is scarce. In this work, high resolution scanning transmission electron microscopy (STEM) and electron energy‐loss spectroscopy (EELS) are used to provide an element selective atomic‐scale analysis of the interface in a composite consisting of ultrathin, self‐assembled Ni nanowires, vertically epitaxied in a SrTiO3/SrTiO3(001) matrix. Spectroscopic EELS measurements evidence rather sharp interfaces (6–7 Å) with the creation of metallic NiTi bonds and the absence of nickel oxide formation is confirmed by X‐ray absorption spectroscopy measurements. The presence of these well‐defined phase boundaries, combined with a large lattice mismatch between the oxide and metallic species, gives rise to pronounced magnetoelastic effects. Self‐assembled columnar Ni:SrTiO3 composites thus appear as ideal model systems to explore vertical strain engineering in metal/oxide nanostructures
Kondo screening of the spin and orbital magnetic moments of Fe impurities in Cu
We use x-ray magnetic circular dichroism to evidence the effect of correlations on the local impurity magnetic moment in an archetypal Kondo system, namely, a dilute Cu:Fe alloy. Applying the sum rules on the Fe L2,3 absorption edges, the evolution of the spin and orbital moments across the Kondo temperature are determined separately. The spin moment presents a crossover from a nearly temperature-independent regime below the Kondo temperature to a paramagneticlike regime above. Conversely, the weak orbital moment shows a temperature-independent behavior in the whole temperature range, suggesting different Kondo screening temperature scales for the spin and orbital moments
Ultralow-temperature device dedicated to soft X-ray magnetic circular dichroism experiments
A new ultralow-temperature setup dedicated to soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism (XMCD) experiments is described. Two experiments, performed on the DEIMOS beamline (SOLEIL synchrotron), demonstrate the outstanding performance of this new platform in terms of the lowest achievable temperature under X-ray irradiation (T = 220 mK), the precision in controlling the temperature during measurements as well as the speed of the cooling-down and warming-up procedures. Moreover, owing to the new design of the setup, the eddy-current power is strongly reduced, allowing fast scanning of the magnetic field in XMCD experiments; these performances lead to a powerful device for X-ray spectroscopies on synchrotron-radiation beamlines facilities
DEIMOS: A beamline dedicated to dichroism measurements in the 350-2500 eV energy range:
The DEIMOS (Dichroism Experimental Installation for Magneto-Optical Spectroscopy) beamline was part of the second phase of the beamline development at French Synchrotron SOLEIL (Source Optimisee de Lumiere a Energie Intermediaire du LURE) and opened to users in March 2011. It delivers polarized soft x-rays to perform x-ray absorption spectroscopy, x-ray magnetic circular dichroism, and x-ray linear dichroism in the energy range 350-2500 eV. The beamline has been optimized for stability and reproducibility in terms of photon flux and photon energy. The main end-station consists in a cryo-magnet with 2 split coils providing a 7 T magnetic field along the beam or 2 T perpendicular to the beam with a controllable temperature on the sample from 370 K down to 1.5 K. (C) 2014 AIP Publishing LLC
Temperature- and Light-Induced Spin Crossover Observed by X-ray Spectroscopy on Isolated Fe(II) Complexes on Gold
Using X-ray absorption techniques, we show that temperature- and light-induced spin crossover properties are conserved for a submonolayer of the [Fe(H2B(pz)2)2(2,2′-bipy)] complex evaporated onto a Au(111) surface. For a significant fraction of the molecules, we see changes in the absorption at the L2,3 edges that are consistent with those observed in bulk and thick film references. Assignment of these changes to spin crossover is further supported by multiplet calculations to simulate the X-ray absorption spectra. As others have observed in experiments on monolayer coverages, we find that many molecules in our submonolayer system remain pinned in one of the two spin states. Our results clearly demonstrate that temperature- and light-induced spin crossover is possible for isolated molecules on surfaces but that interactions with the surface may play a key role in determining when this can occur
RECENT DEVELOPMENTS IN THE EXPERIMENTAL STUDIES OF XANES
La spectroscopie d'absorption X au voisinage des seuils informe sur la structure électronique locale et sur l'arrangement géométrique autour de l'élément absorbant. Cet article présente des résultats expérimentaux récents en les classant d'après l'interprétation qui en est donnée.X-Ray absorption spectroscopy in the vicinity of absorption edges contain information about the electronic structure and about the geometrical arrangement around the absorbing atom. This paper presents recent experimental studies in relation to the type of interpretation which is given
- …