4 research outputs found

    Stress influence on high temperature oxide scale growth: modeling and investigation on a thermal barrier coating system.

    No full text
    International audienceIn thermal barrier coating (TBC) systems, an oxide layer develops at high temperature below the ceramic coating, leading at long term to the mechanical failure of the structure upon cooling. This study investigates a mechanism of stress-affected oxidation likely to induce the growth of a non-uniform oxide scale detrimental to the TBC lifetime. A continuum thermodynamics formulation is derived accounting for the influence of the stress and strain situation at the sharp metal/oxide phase boundary on the local oxidation kinetics. It specially includes the contributions of the large volumetric strain and the mass consumption associated with metal oxidation. A continuum mechanics/mass diffusion framework is used along with the developed formulation for the interface evolution to study the growth of an oxide layer coupled with local stress development. The implementation of the model has required the development of a specific simulation tool, based on a finite element method completed with an external routine for the phase boundary propagation. Results on an electron-beam physical vapor deposited (EB-PVD) TBC case are presented. The processes resulting in a non-uniform oxide scale growth are analyzed and the main influences are discussed

    Modeling and simulation of stress-induced non-uniform oxide scale growth during high-temperature oxidation of metallic alloys.

    Get PDF
    The metallic alloys employed in oxidizing environment at high temperature rely on the development of a protective oxide scale to sustain the long-term aggressive exposition. However, the oxide scale growth is most of the time coupled with stress and morphological developments limiting its lifetime and then jeopardizing the metallic component reliability. In this study, a mechanism of local stress effect on the oxidation kinetics at the metal/oxide interface is investigated. The objective is to improve the understanding on the possible interactions between stress generation and non-uniform oxide scale growth, which might result in a precipitated mechanical failure of the system. Two different oxides are studied, alumina and chromia, in two different industrial systems, thermal barrier coatings and solid oxide fuel cell interconnects. A specific thermodynamic treatment of local oxide phase growth coupled with stress generation is developed. The formulation is completed with a phenomenological macroscopic framework and a numerical simulation tool is developed allowing for realistic analyses. Two practical situations are simulated and analyzed, concerning an SOFC interconnect and a thermal barrier coating system, for which oxide scale growth and associated stress and morphological developments are critical. The consequence of the non-uniform oxide growth on the system resistance to mechanical failure is investigated. Finally, the influences of material-related properties are studied, providing optimization directions for the design of metallic alloys which would improve the mechanical lifetime of the considered systems.Ph.D.Committee Chair: Cherkaoui, Mohammed; Committee Member: Busso, Esteban P.; Committee Member: McDowell, David L.; Committee Member: Neu, Rick; Committee Member: Singh, Pree

    Mercury Amalgam Electrodeposition on Metal Microelectrodes

    No full text
    Mercury amalgam microelectrodes, typically fabricated by electrodeposition of mercury onto metal (platinum, gold, silver) inlaid disks, possess certain advantageous properties for scanning electrochemical microscopy (SECM) and electroanalysis. But as applications require more and more precision, fundamental questions concerning the exact shape and constitution of the amalgam can become important for interpreting SECM experimental data. The purpose of this study is to analyze in depth the formation of the amalgam, in order to provide a better understanding of the key physical processes, and so be able to judge of the accuracy of the currently used models and refine them when necessary. The amalgam formation is the result of several processes that occur roughly at two different scales: the global scale, which is microscopic, and the local scale, of the order of few nanometers. On the global scale, the dominant physical process is the mass transport, driven almost entirely by diffusion, which determines the rate of mercury deposition. Other phenomena occur at the smaller local scale. Their understanding is essential to predict precisely the volume and shape of the amalgam at shorter times. Among these local phenomena, nucleation and droplet interactions appear critical. The former sets the formation rate and the size of the isolated mercury droplets that are initially formed at the surface of the electrode. An understanding of the latter is necessary to determine the droplet coalescence process. Among the specific accomplishments of this Master thesis work, a time scale analysis of the global phenomena has been performed leading to the conclusion that quasi-steady state diffusion of mercury ions in the bulk mainly defines the electrodeposition rate. Then, a series of analytical formulations for diffusion-limited electrodeposition current available in the literature has been quickly analyzed, leading to development of analytical/numerical models. These latter have been implemented, and results were critically compared with experimental data, leading to the conclusion that the early electrodeposition was not enough finely modeled. Mercury droplets nucleation and surface interaction have been identified as relevant processes of this period. They have next been investigated in detail, leading to the characterization of the nucleation process, and the derivation of two complimentary approaches on charged droplet stability. Regime maps have been developed, providing first explanations and quantitative information on charged droplet stability dependence on potential applied, electrolyte and droplet size. Finally, through analysis of theoretical predictions, a series of electroanalytical experiments have been proposed for the future validation of the suggested theoretical models.M.S.Committee Chair: Fedorov Andrei; Committee Member: Aidun Cyrus; Committee Member: Bottomley Lawrenc
    corecore