5 research outputs found

    Phytochemicals of “Magahi Pan” (Piper betle L. var. magahi) as Potential H+/K+-ATPase Inhibitors: In-Silico Study and ADME Profile

    Get PDF
    Background and objectives:  in India, peptic ulcer is most prevalent gastrointestinal disease. Historically Piper betle has been used to treat stomach problems. In order to identify the phytochemicals present in Piper betle. L. var magahi LC/MS spectroscopic analysis was performed, following which, potential phytomolecules with H+/K+-ATPase inhibitory activity were chosen using in-silico evaluation. Methods: Phytochemicals in ‘Magahi pan” were investigated and potential H+/K+-ATPase inhibitor phytochemicals that were screened through in-silico analysis and ADME profile of selected phytochemicals were evaluated. Phytochemical characterization was done with the help of LC/MS followed by molecular docking against enzyme H+/K+-ATPase (PDBID:5YLV) using Autodock4.2 and Swiss ADME. The binding affinity, free energy, physicochemical property, saturation of carbon atoms, number of hydrogen bond acceptors-donors, molar refractivity, lipophilicity, water solubility, and drug likeliness property were evaluated in-silico for their predicted bioactivity against H+/K+-ATPase. Results: A total of 67 phytoconstituents were identified through LC/MS positive and negative ionization mode spectral analysis and six were selected on the basis of binding energy. Molecular docking results revealed that the isolated compounds interacted with target protein H+/K+-ATPase with minimum binding energy ranging from (1) netilmicin (-9.29 kcal/mol); (2) benztropine (-9.07 kcal/mol); (3) 5,6,7,3’,4’ pentahydroxyisoflavone (-8.45 kcal/mol); (4) 2-O-acetylpseudolycorine (-8.02 kcal/mol);  (5) R-95913 (-7.73 kcal/mol) and (6) luteolin (-6.93 kcal/mol), respectively. Conclusion: The ADME profile analysis and docking studies revealed 5,6,7,3’,4’ pentahydroxy-isoflavone and luteolin as potential molecules for inhibiting H+/K+-ATPase

    Listeriosis in a peri-urban area: Cultural and molecular characterization of Listeria monocytogenes isolated from encephalitic goats

    Get PDF
    Background and Aim: Listeriosis in food animals bears a significant threat to human health. Detailed investigations into the cause facilitate proper management of the disease. This study reports the cultural, pathological, and molecular characterization of Listeria monocytogenes isolated from encephalitic goats from peri-urban Guwahati, Assam. Materials and Methods: Out of nine suspected samples, five positive isolates of L. monocytogenes were subjected to bacteriological, biochemical, and molecular tests. The genus and species-specific L. monocytogenes 16S rRNA and prs genes were amplified by polymerase chain reaction (PCR) to yield 1200 and 370 bp sized products, respectively. The encephalitic form of the disease was characterized by circling movement, high fever, and terminal recumbence. Results: All the five isolates were confirmed to be L. monocytogenes based on PCR amplification of genus and species-specific 16S rRNA and prs gene products. The isolates were sensitive to ciprofloxacin, oxytetracycline (OTC), and norfloxacin, but resistant to doxycycline and erythromycin. A high dose of OTC was used in a goat at the early stage of clinical symptom and the animal recovered clinically. Conclusion: Listeriosis in goats could pose a significant public health threat as the meat (occasionally milk) or meat products from goats are widely consumed by the people of Assam. Understanding the molecular epidemiological aspects of L. monocytogenes infections of food animal species should, therefore, be the priority in this part of the country

    ‘To be happy’: Ritual, play, and leisure in the Bengali Dharmarāj pūjā

    No full text
    corecore