43 research outputs found

    Independent Orbiter Assessment (IOA): Assessment of the manned maneuvering unit

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Manned Maneuvering Unit (MMU) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contain within the NASA FMEA/CIL documentation. The IOA results were then compared to the proposed Martin Marietta FMEA/CIL Post 51-L updates. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. The results of this comparison for the Orbiter MMU hardware are documented. The IOA product for the MMU analysis consisted of 204 failure mode worksheets that resulted in 95 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 179 FMEAs and 110 CIL items. This comparison produced agreement on all 121 FMEAs which caused differences in 92 CIL items

    Independent Orbiter Assessment (IOA): Assessment of the atmospheric revitalization pressure control subsystem FMEA/CIL

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the atmospheric Revitalization Pressure Control Subsystem (ARPCS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL proposed Post 51-L updates based upon the CCB/PRCB presentations and an informal criticality summary listing. A discussion of each discrepancy from the comparison is provided through additional analysis as required. These discrepancies were flagged as issues, and recommendations were made based on the FMEA data available at the time. This report documents the results of that comparison for the Orbiter ARPCS hardware

    Independent Orbiter Assessment (IOA): FMEA/CIL assessment

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. Direction was given by the Orbiter and GFE Projects Office to perform the hardware analysis and assessment using the instructions and ground rules defined in NSTS 22206. The IOA analysis features a top-down approach to determine hardware failure modes, criticality, and potential critical items. To preserve independence, the anlaysis was accomplished without reliance upon the results contained within the NASA and prime contractor FMEA/CIL documentation. The assessment process compares the independently derived failure modes and criticality assignments to the proposed NASA Post 51-L FMEA/CIL documentation. When possible, assessment issues are discussed and resolved with the NASA subsystem managers. The assessment results for each subsystem are summarized. The most important Orbiter assessment finding was the previously unknown stuck autopilot push-button criticality 1/1 failure mode, having a worst case effect of loss of crew/vehicle when a microwave landing system is not active

    Independent Orbiter Assessment (IOA): Assessment of the life support and airlock support systems, volume 1

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Life Support and Airlock Support Systems (LSS and ALSS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. The discrepancies were flagged for potential future resolution. This report documents the results of that comparison for the Orbiter LSS and ALSS hardware. The IOA product for the LSS and ALSS analysis consisted of 511 failure mode worksheets that resulted in 140 potential critical items. Comparison was made to the NASA baseline which consisted of 456 FMEAs and 101 CIL items. The IOA analysis identified 39 failure modes, 6 of which were classified as CIL items, for components not covered by the NASA FMEAs. It was recommended that these failure modes be added to the NASA FMEA baseline. The overall assessment produced agreement on all but 301 FMEAs which caused differences in 111 CIL items

    Independent Orbiter Assessment (IOA): Analysis of the atmospheric revitalization pressure control subsystem

    Get PDF
    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode

    Seismic response analysis of multiple-frame bridges with unseating restrainers considering ground motion spatial variation and SSI

    Get PDF
    Unseating damages of bridge decks have been observed in many previous major earthquakes due to large relative displacement exceeding the available seat length. Steel cable restrainers are often used to limit such relative displacements. Present restrainer design methods are based on the relative displacements caused by the different dynamic characteristics of adjacent bridge structures. However, the relative displacements in bridge structures are not only caused by different dynamic characteristics of adjacent bridge segments. Recent studies indicated that differential ground motions at supports of bridge piers and Soil Structure Interaction (SSI) could have a significant influence on the relative displacement of adjacent bridge components. Thus the present design methods could significantly underestimate the relative displacement responses of the adjacent bridge components and the stiffness of the restrainers required to limit these displacements. None of the previous investigations considered the effects of spatially varying ground motions in evaluating the adequacy of the restrainers design methods. Moreover, the code recommendation of adjusting the fundamental frequencies of adjacent bridge structures close to each other to mitigate relative displacement induced damages is developed based on the uniform ground motion assumption. Investigations on its effectiveness to mitigate the relative displacement induced damages on the bridge structures subjected to spatially varying ground motion and SSI are made. This paper discusses the effects of spatially varying ground motions and SSI on the responses of the multiple-frame bridges with unseating restrainers through inelastic bridge response analysis

    The Dahuiyeh (Zarand) earthquake of 2005 February 22 in central Iran: reactivitation of an intra-mountain thrust

    Get PDF
    We used seismic body waves, radar interferometry and field investigation to examine the source processes of the destructive earthquake of 2005 February 22 near Zarand, in south–central Iran. The earthquake ruptured an intramountain reverse fault, striking E–W and dipping north at ∼60° to a depth of about 10 km. It produced a series of coseismic scarps with up to 1 m vertical displacement over a total distance of ∼13 km, continuous for 7 km. The line of the coseismic ruptures followed a known geological fault of unknown, but probably pre-Late Cenozoic, age and involved bedding-plane slip where the scarps were continuous at the surface. However, any signs of earlier coseismic ruptures along this fault had been obliterated by the time of the 2005 earthquake, probably by land sliding and weathering, so that the fault could not reasonably have been identified as active beforehand. The 2005 fault is at an oblique angle to the range-bounding Kuh Banan strike-slip fault, and may represent a splay from that fault, related to its southern termination. Other intramountain reverse faulting earthquakes have occurred in Iran, but this is the first to have produced a clear, mapped surface rupture, and to have been studied with InSAR. Faults of this type represent a serious seismic hazard in Iran and are difficult to assess, because their geomorphological expression is much less clear than the range-bounding reverse faults, which are more common and have been better studied
    corecore