9 research outputs found

    Radiology of COVID-19 pneumonia

    Get PDF
    Coronavirus disease (COVID-19) started as a cluster of pneumonia cases in December 2019 and has rapidly spread across the world, resulting in millions of infections, and approaching one million deaths. In this short review we describe the most common chest x-ray and computed tomography manifestations of the virus as it affects the respiratory system, and make brief references to the common clinical presentations

    Obstructive pulmonary disease in patients with previous tuberculosis: Pathophysiology of a community-based cohort

    Get PDF
    Background. An association between chronic airflow limitation (CAL) and a history of pulmonary tuberculosis (PTB) has been confirmed in epidemiological studies, but the mechanisms responsible for this association are unclear. It is debated whether CAL in this context should be viewed as chronic obstructive pulmonary disease (COPD) or a separate phenotype. Objective. To compare lung physiology and high-resolution computed tomography (HRCT) findings in subjects with CAL and evidence of previous (healed) PTB with those in subjects with smoking-related COPD without evidence of previous PTB. Methods. Subjects with CAL identified during a Burden of Obstructive Lung Disease (BOLD) study performed in South Africa were studied. Investigations included questionnaires, lung physiology (spirometry, body plethysmography and diffusing capacity) and quantitative HRCT scans to assess bronchial anatomy and the presence of emphysema (–200 HU). Findings in subjects with a past history and/or HRCT evidence of PTB were compared with those in subjects without these features. Results. One hundred and seven of 196 eligible subjects (54.6%) were enrolled, 104 performed physiology tests and 94 had an HRCT scan. Based on history and HRCT findings, subjects were categorised as no previous PTB (NPTB, n=31), probable previous PTB (n=33) or definite previous PTB (DPTB, n=39). Subjects with DPTB had a lower diffusing capacity (Δ=–17.7%; p=0.001) and inspiratory capacity (Δ=–21.5%; p=0.001) than NPTB subjects, and higher gas-trapping and fibrosis but not emphysema scores (Δ=+6.2% (p=0.021), +0.36% (p=0.017) and +3.5% (p=0.098), respectively). Conclusions. The mechanisms of CAL associated with previous PTB appear to differ from those in the more common smoking-related COPD and warrant further study..info:eu-repo/semantics/publishedVersio

    Obstructive pulmonary disease in patients with previous tuberculosis: Pathophysiology of a community-based cohort

    Get PDF
    CITATION: Allwood, B. W., et al. 2017. Obstructive pulmonary disease in patients with previous tuberculosis : pathophysiology of a community-based cohort. South African Medical Journal, 107(5):440-445, doi:10.7196/SAMJ.2017.v107i5.12118.The original publication is available at http://www.samj.org.zaBackground. An association between chronic airflow limitation (CAL) and a history of pulmonary tuberculosis (PTB) has been confirmed in epidemiological studies, but the mechanisms responsible for this association are unclear. It is debated whether CAL in this context should be viewed as chronic obstructive pulmonary disease (COPD) or a separate phenotype. Objective. To compare lung physiology and high-resolution computed tomography (HRCT) findings in subjects with CAL and evidence of previous (healed) PTB with those in subjects with smoking-related COPD without evidence of previous PTB. Methods. Subjects with CAL identified during a Burden of Obstructive Lung Disease (BOLD) study performed in South Africa were studied. Investigations included questionnaires, lung physiology (spirometry, body plethysmography and diffusing capacity) and quantitative HRCT scans to assess bronchial anatomy and the presence of emphysema (–200 HU). Findings in subjects with a past history and/or HRCT evidence of PTB were compared with those in subjects without these features. Results. One hundred and seven of 196 eligible subjects (54.6%) were enrolled, 104 performed physiology tests and 94 had an HRCT scan. Based on history and HRCT findings, subjects were categorised as no previous PTB (NPTB, n=31), probable previous PTB (n=33) or definite previous PTB (DPTB, n=39). Subjects with DPTB had a lower diffusing capacity (Δ=–17.7%; p=0.001) and inspiratory capacity (Δ=–21.5%; p=0.001) than NPTB subjects, and higher gas-trapping and fibrosis but not emphysema scores (Δ=+6.2% (p=0.021), +0.36% (p=0.017) and +3.5% (p=0.098), respectively). Conclusions. The mechanisms of CAL associated with previous PTB appear to differ from those in the more common smoking-related COPD and warrant further study.http://www.samj.org.za/index.php/samj/article/view/11885Publisher's versio

    Obstructive pulmonary disease in patients with previous tuberculosis: Pathophysiology of a community-based cohort

    Get PDF
    Background. An association between chronic airflow limitation (CAL) and a history of pulmonary tuberculosis (PTB) has been confirmed in epidemiological studies, but the mechanisms responsible for this association are unclear. It is debated whether CAL in this context should be viewed as chronic obstructive pulmonary disease (COPD) or a separate phenotype.Objective. To compare lung physiology and high-resolution computed tomography (HRCT) findings in subjects with CAL and evidence of previous (healed) PTB with those in subjects with smoking-related COPD without evidence of previous PTB.Methods. Subjects with CAL identified during a Burden of Obstructive Lung Disease (BOLD) study performed in South Africa were studied. Investigations included questionnaires, lung physiology (spirometry, body plethysmography and diffusing capacity) and quantitative HRCT scans to assess bronchial anatomy and the presence of emphysema (<–950 HU), gas trapping (<–860 HU) and fibrosis (>–200 HU). Findings in subjects with a past history and/or HRCT evidence of PTB were compared with those in subjects without these features.Results. One hundred and seven of 196 eligible subjects (54.6%) were enrolled, 104 performed physiology tests and 94 had an HRCT scan. Based on history and HRCT findings, subjects were categorised as no previous PTB (NPTB, n=31), probable previous PTB (n=33) or definite previous PTB (DPTB, n=39). Subjects with DPTB had a lower diffusing capacity (Δ=–17.7%; p=0.001) and inspiratory capacity (Δ=–21.5%; p=0.001) than NPTB subjects, and higher gas-trapping and fibrosis but not emphysema scores (Δ=+6.2% (p=0.021), +0.36% (p=0.017) and +3.5% (p=0.098), respectively).Conclusions. The mechanisms of CAL associated with previous PTB appear to differ from those in the more common smoking-related COPD and warrant further study

    High-resolution CT phenotypes in pulmonary sarcoidosis: a multinational Delphi consensus study

    Get PDF
    One view of sarcoidosis is that the term covers many different diseases. However, no classification framework exists for the future exploration of pathogenetic pathways, genetic or trigger predilections, patterns of lung function impairment, or treatment separations, or for the development of diagnostic algorithms or relevant outcome measures. We aimed to establish agreement on high-resolution CT (HRCT) phenotypic separations in sarcoidosis to anchor future CT research through a multinational two-round Delphi consensus process. Delphi participants included members of the Fleischner Society and the World Association of Sarcoidosis and other Granulomatous Disorders, as well as members' nominees. 146 individuals (98 chest physicians, 48 thoracic radiologists) from 28 countries took part, 144 of whom completed both Delphi rounds. After rating of 35 Delphi statements on a five-point Likert scale, consensus was achieved for 22 (63%) statements. There was 97% agreement on the existence of distinct HRCT phenotypes, with seven HRCT phenotypes that were categorised by participants as non-fibrotic or likely to be fibrotic. The international consensus reached in this Delphi exercise justifies the formulation of a CT classification as a basis for the possible definition of separate diseases. Further refinement of phenotypes with rapidly achievable CT studies is now needed to underpin the development of a formal classification of sarcoidosis

    Effects of tuberculosis and/or HIV-1 infection on COVID-19 presentation and immune response in Africa

    No full text
    Here the authors describe outcomes of SARS-CoV-2 infection in an African setting of high HIV-1 and tuberculosis prevalence. They find that tuberculosis is a common co-morbidity in patients admitted to hospital with COVID-19 and that the immune response to SARS-CoV-2 is adversely affected by co-existent HIV-1 and tuberculosis
    corecore