6 research outputs found
Nouvelles approches thérapeutiques pour réduire les réponses au stress associées aux dysfonctions cérébrovasculaires et réparatrices en situation diabétique par des principes actifs vectorisés
Diabetes is a major health issue worldwide. It is characterized by hyperglycemia, insulin resistance and is associated with many microvascular and macrovascular complications. In diabetic conditions, methylglyoxal (MGO) levels are increased. MGO is a major precursor of advanced glycation end products (AGE) formation and it induces cellular oxidative stress, inflammation and endoplasmic reticulum (ER) stress. These cellular stresses play a crucial role in endothelial and blood brain barrier (BBB) dysfunctions and also delay the wound healing. My thesis objective was to improve the drug delivery of a plant derived compound (Curcumin). Curcumin has several beneficial properties such as antioxidant and anti-inflammatory properties but its effects are limited due to its hydrophobic nature. Nanovectors such as High Density Lipoprotein (HDL) or micelles may help to improve the delivery of curcumin. Curcumin vectorized by HDL or micelles were evaluated in two different models: in vitro brain endothelial cell protection from methylglyoxal and in vivo tail regeneration in Zebra fish. Curcumin loaded rHDL nanoparticles (Cur-rHDLs) were prepared by mixing HDL and curcumin briefly followed by ultracentrifugation. Amount of curcumin loaded was quantified by LC-MS/MS analysis. Brain endothelial cells (Bend3), were pre-treated with rHDL, curcumin and Cur-rHDLs for 1h before co-incubating with MGO. Cur-rHDLs showed a protective effect by reducing the cytotoxicity, reactive oxygen species (ROS) production, ER stress, and chromatin condensation induced by MGO. It also improved the endothelial cell integrity impaired by MGO. Cur-rHDLs showed a synergistic effect compared to curcumin or rHDL alone. Curcumin loaded carrageenan polysaccharide micelles (Cur-micelles) were prepared by using oligocarrageenan (digested carrageenan) copolymerized with polycaprolactone. Curcumin was loaded by acetone volatilization method. Cur-micelles were characterized by nuclear magnetic resonance analysis and dynamic light scattering analysis. On the Zebrafish tail amputation model, Cur-micelles increased macrophages and neutrophils recruitment to the site of tail injuryand had a positive impact on the tail regeneration by increasing the tail regenerative area. Curmicelles also showed a synergistic effect compared to curcumin or micelles alone. These studies show the potential beneficial effects of Cur-rHDLs and Cur-micelles on MGO stimulated endothelial cells and on zebrafish tail regeneration, respectively. They open new research perspectives to further investigate and understand the mechanisms that can be used to develop therapeutics for diabetic vascular complications.Le diabĂšte est un problĂšme majeur de santĂ© publique. Il est caractĂ©risĂ© par une hyperglycĂ©mie, une rĂ©sistance Ă lâinsuline et est associĂ© Ă des complications macro et micro vasculaires. En situation de diabĂštes, la concentration de mĂ©thylglyoxal (MGO) est augmentĂ©e. Le MGO est un prĂ©curseur des produits avancĂ©s de glycation (AGE) et il induit un stress oxydatif, une inflammation et un stress du rĂ©ticulum endoplasmique. Ces stress jouent un rĂŽle important dans les dysfonctions endothĂ©liales et de la barriĂšre hĂ©matoencĂ©phalique ainsi que dans le retard de rĂ©paration des lĂ©sions. Lâobjectif de ma thĂšse a Ă©tĂ© dâamĂ©liorer la dĂ©livrance de curcumine, une molĂ©cule dâorigine vĂ©gĂ©tale. La curcumine a plusieurs effets bĂ©nĂ©fiques tel que des activitĂ©s anti oxydantes et anti inflammatoires, mais ces effets sont limitĂ©s par son hydrophobicitĂ©. Des nanovecteurs tel que des protĂ©ines de hautes densitĂ©s (HDL) ou des micelles peuvent amĂ©liorer la dĂ©livrance de la curcumine. Lâeffet de la curcumine, vectorisĂ©e par des HDL ou par des micelles, a Ă©tĂ© Ă©valuĂ©e dans deux modĂšles diffĂ©rents : la protection de cellules endothĂ©liales en prĂ©sence de MGO in vitro et in vivo, la rĂ©gĂ©nĂ©ration de la nageoire caudale chez le poisson zĂšbre. Des nanoparticules de rHDL associĂ©es avec la curcumine (Cur-rHDLs) ont Ă©tĂ© prĂ©parĂ©es par ultracentrifugation aprĂšs avoir mĂ©langĂ© briĂšvement les HDL avec la curcumine. Une analyse par LC-MS/MS a permis de quantifier la curcumine associĂ©e aux HDL. Les cellules endothĂ©liales cĂ©rĂ©brales Bend3 ont Ă©tĂ© prĂ©traitĂ©es 1 heure en prĂ©sence de rHDL, de curcumine ou de Cur-rHDLs puis incubĂ©es en prĂ©sence de MGO. Sur des cellules traitĂ©es par du MGO, la Cur-rHDLs a montrĂ© un effet protecteur en rĂ©duisant la cytotoxicitĂ©, la production dâespĂšces radicalaires dâoxygĂšne, le stress du rĂ©ticulum endoplasmique et la condensation de la chromatine. Elle amĂ©liore Ă©galement lâintĂ©gritĂ© des cellules endothĂ©liales compromise par le MGO. La Cur-rHDLs a un effet synergique en comparaison des effets de la curcumine ou des rHDLs seuls. Des micelles de polysaccharide dâalgues (des carraghĂ©nanes) associĂ©es avec de la curcumine (Cur-micelles) ont Ă©tĂ© prĂ©parĂ©es en copolymĂ©risant des oligocarraghĂ©nanes (carraghĂ©nanes digĂ©rĂ©es) avec du polycaprolactone. La curcumine a Ă©tĂ© associĂ©e aux micelles par la mĂ©thode dâĂ©vaporation de lâacĂ©tone. Les Cur-micelles ont Ă©tĂ© caractĂ©risĂ©es par des analyses de spectroscopie de rĂ©sonance magnĂ©tique nuclĂ©aire et de diffusion dynamique de la lumiĂšre. Dans ce modĂšle, les Cur-micelles augmentent le recrutement des macrophages et des neutrophiles au site de la lĂ©sion ainsi que la taille de la surface de la nageoire rĂ©gĂ©nĂ©rĂ©e. Les Cur-micelles ont Ă©galement un effet synergique en comparaison des effets de la curcumine ou des micelles seules. Ces travaux montrent les effets bĂ©nĂ©fiques des Cur-rHDLs sur des cellules endothĂ©liales en prĂ©sence de MGO et des Cur-micelles sur la rĂ©gĂ©nĂ©rescence de la nageoire caudale des poissons zĂšbres. Ils permettent une meilleure comprĂ©hension de ces approches et ouvrent de nouvelles perspectives de recherche pour le dĂ©veloppement de thĂ©rapies dans le cadre de complications vasculaires associĂ©es au diabĂšte
Nouvelles approches thérapeutiques pour réduire les réponses au stress associées aux dysfonctions cérébrovasculaires et réparatrices en situation diabétique par des principes actifs vectorisés
Le diabĂšte est un problĂšme majeur de santĂ© publique. Il est caractĂ©risĂ© par une hyperglycĂ©mie, une rĂ©sistance Ă lâinsuline et est associĂ© Ă des complications macro et micro vasculaires. En situation de diabĂštes, la concentration de mĂ©thylglyoxal (MGO) est augmentĂ©e. Le MGO est un prĂ©curseur des produits avancĂ©s de glycation (AGE) et il induit un stress oxydatif, une inflammation et un stress du rĂ©ticulum endoplasmique. Ces stress jouent un rĂŽle important dans les dysfonctions endothĂ©liales et de la barriĂšre hĂ©matoencĂ©phalique ainsi que dans le retard de rĂ©paration des lĂ©sions. Lâobjectif de ma thĂšse a Ă©tĂ© dâamĂ©liorer la dĂ©livrance de curcumine, une molĂ©cule dâorigine vĂ©gĂ©tale. La curcumine a plusieurs effets bĂ©nĂ©fiques tel que des activitĂ©s anti oxydantes et anti inflammatoires, mais ces effets sont limitĂ©s par son hydrophobicitĂ©. Des nanovecteurs tel que des protĂ©ines de hautes densitĂ©s (HDL) ou des micelles peuvent amĂ©liorer la dĂ©livrance de la curcumine. Lâeffet de la curcumine, vectorisĂ©e par des HDL ou par des micelles, a Ă©tĂ© Ă©valuĂ©e dans deux modĂšles diffĂ©rents : la protection de cellules endothĂ©liales en prĂ©sence de MGO in vitro et in vivo, la rĂ©gĂ©nĂ©ration de la nageoire caudale chez le poisson zĂšbre. Des nanoparticules de rHDL associĂ©es avec la curcumine (Cur-rHDLs) ont Ă©tĂ© prĂ©parĂ©es par ultracentrifugation aprĂšs avoir mĂ©langĂ© briĂšvement les HDL avec la curcumine. Une analyse par LC-MS/MS a permis de quantifier la curcumine associĂ©e aux HDL. Les cellules endothĂ©liales cĂ©rĂ©brales Bend3 ont Ă©tĂ© prĂ©traitĂ©es 1 heure en prĂ©sence de rHDL, de curcumine ou de Cur-rHDLs puis incubĂ©es en prĂ©sence de MGO. Sur des cellules traitĂ©es par du MGO, la Cur-rHDLs a montrĂ© un effet protecteur en rĂ©duisant la cytotoxicitĂ©, la production dâespĂšces radicalaires dâoxygĂšne, le stress du rĂ©ticulum endoplasmique et la condensation de la chromatine. Elle amĂ©liore Ă©galement lâintĂ©gritĂ© des cellules endothĂ©liales compromise par le MGO. La Cur-rHDLs a un effet synergique en comparaison des effets de la curcumine ou des rHDLs seuls. Des micelles de polysaccharide dâalgues (des carraghĂ©nanes) associĂ©es avec de la curcumine (Cur-micelles) ont Ă©tĂ© prĂ©parĂ©es en copolymĂ©risant des oligocarraghĂ©nanes (carraghĂ©nanes digĂ©rĂ©es) avec du polycaprolactone. La curcumine a Ă©tĂ© associĂ©e aux micelles par la mĂ©thode dâĂ©vaporation de lâacĂ©tone. Les Cur-micelles ont Ă©tĂ© caractĂ©risĂ©es par des analyses de spectroscopie de rĂ©sonance magnĂ©tique nuclĂ©aire et de diffusion dynamique de la lumiĂšre. Dans ce modĂšle, les Cur-micelles augmentent le recrutement des macrophages et des neutrophiles au site de la lĂ©sion ainsi que la taille de la surface de la nageoire rĂ©gĂ©nĂ©rĂ©e. Les Cur-micelles ont Ă©galement un effet synergique en comparaison des effets de la curcumine ou des micelles seules. Ces travaux montrent les effets bĂ©nĂ©fiques des Cur-rHDLs sur des cellules endothĂ©liales en prĂ©sence de MGO et des Cur-micelles sur la rĂ©gĂ©nĂ©rescence de la nageoire caudale des poissons zĂšbres. Ils permettent une meilleure comprĂ©hension de ces approches et ouvrent de nouvelles perspectives de recherche pour le dĂ©veloppement de thĂ©rapies dans le cadre de complications vasculaires associĂ©es au diabĂšte.Diabetes is a major health issue worldwide. It is characterized by hyperglycemia, insulin resistance and is associated with many microvascular and macrovascular complications. In diabetic conditions, methylglyoxal (MGO) levels are increased. MGO is a major precursor of advanced glycation end products (AGE) formation and it induces cellular oxidative stress, inflammation and endoplasmic reticulum (ER) stress. These cellular stresses play a crucial role in endothelial and blood brain barrier (BBB) dysfunctions and also delay the wound healing. My thesis objective was to improve the drug delivery of a plant derived compound (Curcumin). Curcumin has several beneficial properties such as antioxidant and anti-inflammatory properties but its effects are limited due to its hydrophobic nature. Nanovectors such as High Density Lipoprotein (HDL) or micelles may help to improve the delivery of curcumin. Curcumin vectorized by HDL or micelles were evaluated in two different models: in vitro brain endothelial cell protection from methylglyoxal and in vivo tail regeneration in Zebra fish. Curcumin loaded rHDL nanoparticles (Cur-rHDLs) were prepared by mixing HDL and curcumin briefly followed by ultracentrifugation. Amount of curcumin loaded was quantified by LC-MS/MS analysis. Brain endothelial cells (Bend3), were pre-treated with rHDL, curcumin and Cur-rHDLs for 1h before co-incubating with MGO. Cur-rHDLs showed a protective effect by reducing the cytotoxicity, reactive oxygen species (ROS) production, ER stress, and chromatin condensation induced by MGO. It also improved the endothelial cell integrity impaired by MGO. Cur-rHDLs showed a synergistic effect compared to curcumin or rHDL alone. Curcumin loaded carrageenan polysaccharide micelles (Cur-micelles) were prepared by using oligocarrageenan (digested carrageenan) copolymerized with polycaprolactone. Curcumin was loaded by acetone volatilization method. Cur-micelles were characterized by nuclear magnetic resonance analysis and dynamic light scattering analysis. On the Zebrafish tail amputation model, Cur-micelles increased macrophages and neutrophils recruitment to the site of tail injuryand had a positive impact on the tail regeneration by increasing the tail regenerative area. Curmicelles also showed a synergistic effect compared to curcumin or micelles alone. These studies show the potential beneficial effects of Cur-rHDLs and Cur-micelles on MGO stimulated endothelial cells and on zebrafish tail regeneration, respectively. They open new research perspectives to further investigate and understand the mechanisms that can be used to develop therapeutics for diabetic vascular complications
Nouvelles approches thérapeutiques pour réduire les réponses au stress associées aux dysfonctions cérébrovasculaires et réparatrices en situation diabétique par des principes actifs vectorisés
Diabetes is a major health issue worldwide. It is characterized by hyperglycemia, insulin resistance and is associated with many microvascular and macrovascular complications. In diabetic conditions, methylglyoxal (MGO) levels are increased. MGO is a major precursor of advanced glycation end products (AGE) formation and it induces cellular oxidative stress, inflammation and endoplasmic reticulum (ER) stress. These cellular stresses play a crucial role in endothelial and blood brain barrier (BBB) dysfunctions and also delay the wound healing. My thesis objective was to improve the drug delivery of a plant derived compound (Curcumin). Curcumin has several beneficial properties such as antioxidant and anti-inflammatory properties but its effects are limited due to its hydrophobic nature. Nanovectors such as High Density Lipoprotein (HDL) or micelles may help to improve the delivery of curcumin. Curcumin vectorized by HDL or micelles were evaluated in two different models: in vitro brain endothelial cell protection from methylglyoxal and in vivo tail regeneration in Zebra fish. Curcumin loaded rHDL nanoparticles (Cur-rHDLs) were prepared by mixing HDL and curcumin briefly followed by ultracentrifugation. Amount of curcumin loaded was quantified by LC-MS/MS analysis. Brain endothelial cells (Bend3), were pre-treated with rHDL, curcumin and Cur-rHDLs for 1h before co-incubating with MGO. Cur-rHDLs showed a protective effect by reducing the cytotoxicity, reactive oxygen species (ROS) production, ER stress, and chromatin condensation induced by MGO. It also improved the endothelial cell integrity impaired by MGO. Cur-rHDLs showed a synergistic effect compared to curcumin or rHDL alone. Curcumin loaded carrageenan polysaccharide micelles (Cur-micelles) were prepared by using oligocarrageenan (digested carrageenan) copolymerized with polycaprolactone. Curcumin was loaded by acetone volatilization method. Cur-micelles were characterized by nuclear magnetic resonance analysis and dynamic light scattering analysis. On the Zebrafish tail amputation model, Cur-micelles increased macrophages and neutrophils recruitment to the site of tail injuryand had a positive impact on the tail regeneration by increasing the tail regenerative area. Curmicelles also showed a synergistic effect compared to curcumin or micelles alone. These studies show the potential beneficial effects of Cur-rHDLs and Cur-micelles on MGO stimulated endothelial cells and on zebrafish tail regeneration, respectively. They open new research perspectives to further investigate and understand the mechanisms that can be used to develop therapeutics for diabetic vascular complications.Le diabĂšte est un problĂšme majeur de santĂ© publique. Il est caractĂ©risĂ© par une hyperglycĂ©mie, une rĂ©sistance Ă lâinsuline et est associĂ© Ă des complications macro et micro vasculaires. En situation de diabĂštes, la concentration de mĂ©thylglyoxal (MGO) est augmentĂ©e. Le MGO est un prĂ©curseur des produits avancĂ©s de glycation (AGE) et il induit un stress oxydatif, une inflammation et un stress du rĂ©ticulum endoplasmique. Ces stress jouent un rĂŽle important dans les dysfonctions endothĂ©liales et de la barriĂšre hĂ©matoencĂ©phalique ainsi que dans le retard de rĂ©paration des lĂ©sions. Lâobjectif de ma thĂšse a Ă©tĂ© dâamĂ©liorer la dĂ©livrance de curcumine, une molĂ©cule dâorigine vĂ©gĂ©tale. La curcumine a plusieurs effets bĂ©nĂ©fiques tel que des activitĂ©s anti oxydantes et anti inflammatoires, mais ces effets sont limitĂ©s par son hydrophobicitĂ©. Des nanovecteurs tel que des protĂ©ines de hautes densitĂ©s (HDL) ou des micelles peuvent amĂ©liorer la dĂ©livrance de la curcumine. Lâeffet de la curcumine, vectorisĂ©e par des HDL ou par des micelles, a Ă©tĂ© Ă©valuĂ©e dans deux modĂšles diffĂ©rents : la protection de cellules endothĂ©liales en prĂ©sence de MGO in vitro et in vivo, la rĂ©gĂ©nĂ©ration de la nageoire caudale chez le poisson zĂšbre. Des nanoparticules de rHDL associĂ©es avec la curcumine (Cur-rHDLs) ont Ă©tĂ© prĂ©parĂ©es par ultracentrifugation aprĂšs avoir mĂ©langĂ© briĂšvement les HDL avec la curcumine. Une analyse par LC-MS/MS a permis de quantifier la curcumine associĂ©e aux HDL. Les cellules endothĂ©liales cĂ©rĂ©brales Bend3 ont Ă©tĂ© prĂ©traitĂ©es 1 heure en prĂ©sence de rHDL, de curcumine ou de Cur-rHDLs puis incubĂ©es en prĂ©sence de MGO. Sur des cellules traitĂ©es par du MGO, la Cur-rHDLs a montrĂ© un effet protecteur en rĂ©duisant la cytotoxicitĂ©, la production dâespĂšces radicalaires dâoxygĂšne, le stress du rĂ©ticulum endoplasmique et la condensation de la chromatine. Elle amĂ©liore Ă©galement lâintĂ©gritĂ© des cellules endothĂ©liales compromise par le MGO. La Cur-rHDLs a un effet synergique en comparaison des effets de la curcumine ou des rHDLs seuls. Des micelles de polysaccharide dâalgues (des carraghĂ©nanes) associĂ©es avec de la curcumine (Cur-micelles) ont Ă©tĂ© prĂ©parĂ©es en copolymĂ©risant des oligocarraghĂ©nanes (carraghĂ©nanes digĂ©rĂ©es) avec du polycaprolactone. La curcumine a Ă©tĂ© associĂ©e aux micelles par la mĂ©thode dâĂ©vaporation de lâacĂ©tone. Les Cur-micelles ont Ă©tĂ© caractĂ©risĂ©es par des analyses de spectroscopie de rĂ©sonance magnĂ©tique nuclĂ©aire et de diffusion dynamique de la lumiĂšre. Dans ce modĂšle, les Cur-micelles augmentent le recrutement des macrophages et des neutrophiles au site de la lĂ©sion ainsi que la taille de la surface de la nageoire rĂ©gĂ©nĂ©rĂ©e. Les Cur-micelles ont Ă©galement un effet synergique en comparaison des effets de la curcumine ou des micelles seules. Ces travaux montrent les effets bĂ©nĂ©fiques des Cur-rHDLs sur des cellules endothĂ©liales en prĂ©sence de MGO et des Cur-micelles sur la rĂ©gĂ©nĂ©rescence de la nageoire caudale des poissons zĂšbres. Ils permettent une meilleure comprĂ©hension de ces approches et ouvrent de nouvelles perspectives de recherche pour le dĂ©veloppement de thĂ©rapies dans le cadre de complications vasculaires associĂ©es au diabĂšte
Distribution of microglia/immune cells in the brain of adult zebrafish in homeostatic and regenerative conditions: Focus on oxidative stress during brain repair
Microglia are macrophage-like cells exerting determinant roles in neuroinflammatory and oxidative stress processes during brain regeneration. We used zebrafish as a model of brain plasticity and repair. First, by performing L-plastin (Lcp1) immunohistochemistry and using transgenic Tg(mpeg1.1:GFP) or Tg(mpeg1.1:mCherry) fish, we analyzed the distribution of microglia/immune cells in the whole brain. Specific regional differences were evidenced in terms of microglia/immune cell density and morphology (elongated, branched, highly branched, and amoeboid). Taking advantage of Tg(fli:GFP) and Tg(GFAP::GFP) enabling the detection of endothelial cells and neural stem cells (NSCs), we highlighted the association of elongated microglia/immune cells with blood vessels and rounded/amoeboid microglia with NSCs. Second, after telencephalic injury, we showed that L-plastin cells were still abundantly present at 5 days post-lesion (dpl) and were associated with regenerative neurogenesis. Finally, RNAsequencing analysis from injured telencephalon (5 dpl) confirmed the upregulation of microglia/immune cell markers and highlighted a significant increase of genes involved in oxidative stress (nox2, nrf2a, and gsr). The analysis of antioxidant activities at 5 dpl also revealed an upregulation of superoxide dismutase and persistent H2O2 generation in the injured telencephalon. Also, microglia/immune cells were shown to be a source of oxidative stress at 5 dpl. Overall, our data provide a better characterization of microglia/immune cell distribution in the healthy zebrafish brain, highlighting some evolutionarily conserved features with mammals. They also emphasize that 5 days after injury, microglia/immune cells are still activated and are associated to a persistent redox imbalance. Together, these data raise the question of the role of oxidative stress in regenerative neurogenesis in zebrafish
ApoA-I Nanoparticles as Curcumin Carriers for Cerebral Endothelial Cells: Improved Cytoprotective Effects against Methylglyoxal
Methylglyoxal (MGO) is a highly reactive metabolite of glucose present at elevated levels in diabetic patients. Its cytotoxicity is associated with endothelial dysfunction, which plays a role in cardiovascular and cerebrovascular complications. Although curcumin has many therapeutic benefits, these are limited due to its low bioavailability. We aimed to improve the bioavailability of curcumin and evaluate a potential synergistic effect of curcumin and reconstituted high-density lipoprotein (rHDL) nanoparticles (Cur-rHDLs) on MGO-induced cytotoxicity and oxidative stress in murine cerebrovascular endothelial cells (bEnd.3). Cur-rHDL nanoparticles (14.02 ± 0.95 nm) prepared by ultracentrifugation and containing curcumin were quantified by LC–MS/MS. The synergistic effect of cur-rHDL nanoparticles was tested on bEnd.3 cytotoxicity, reactive oxygen species (ROS) production, chromatin condensation, endoplasmic reticulum (ER) stress, and endothelial barrier integrity by impedancemetry. The uptake of curcumin, alone or associated with HDLs, was also assessed by mass spectrometry. Pretreatment with Cur-rHDLs followed by incubation with MGO showed a protective effect on MGO-induced cytotoxicity and chromatin condensation, as well as a strong protective effect on ROS production, endothelial cell barrier integrity, and ER stress. These results suggest that Cur-rHDLs could be used as a potential therapeutic agent to limit MGO-induced dysfunction in cerebrovascular endothelial cells by enhancing the bioavailability and protective effects of curcumin
Expression of adiponectin receptors in the brain of adult zebrafish and mouse: Links with neurogenic niches and brain repair
International audienceAdiponectin and its receptors (adipor) have been initially characterized for their role in lipid and glucose metabolism. More recently, adiponectin signaling was shown to display antiâinflammatory effects and to participate in brain homeostasis and neuroprotection. In this study, we investigated adipor gene expression and its regulation under inflammatory conditions in two complementary models: mouse and zebrafish. We demonstrate that adipor1a, adipor1b, and adipor2 are widely distributed throughout the brain of adult fish, in neurons and also in radial glia, behaving as neural stem cells. We also show that telencephalic injury results in a decrease in adipor gene expression, inhibited by an antiâinflammatory treatment (Dexamethasone). Interestingly, adiponectin injection after brain injury led to a consistent decrease (a) in the recruitment of microglial cells at the lesioned site and (b) in the proliferation of neural progenitors, arguing for a neuroprotective role of adiponectin. In a comparative approach, we investigate Adipor1 and Adipor2 gene distribution in the brain of mice and demonstrated their expression in regions shared with fish including neurogenic regions. We also document Adipor gene expression in mice after middle cerebral artery occlusion and lipopolysaccharide injection. In contrast to zebrafish, these inflammatory stimuli do no impact cerebral adiponectin receptor gene expression in mouse. This work provides new insights regarding adipor expression in the brain of fish, and demonstrates evolutionary conserved distribution of adipor with mouse. This is the first report of adipor expression in adult neural stem cells of fish, suggesting a potential role of adiponectin signaling during vertebrate neurogenesis. It also suggests a potential contribution of inflammation in the regulation of adipor in fish