9,324 research outputs found

    Random self-propulsion to rotational motion of a microswimmer with inertial memory

    Full text link
    We study the motion of an inertial microswimmer in a non-Newtonian environment with a finite memory and present the theoretical realization of an unexpected transition from its random self-propulsion to rotational (circular or elliptical) motion. Further, the rotational motion of the swimmer is followed by spontaneous local direction reversals yet with a steady state angular diffusion. Moreover, the advent of this behaviour is observed in the oscillatory regime of the inertia-memory parameter space of the dynamics. We quantify this unconventional rotational motion of microswimmer by measuring the time evolution of direction of its instantaneous velocity or orientation. By solving the generalized Langevin model of non-Markovian dynamics of an inertial active Ornstein-Uhlenbeck particle, we show that the emergence of the rotational (circular or elliptical) trajectory is due to the presence of inertial memory in the environment or medium.Comment: 6 pages, 4 figure

    Fluctuation theorems and atypical trajectories

    Full text link
    In this work, we have studied simple models that can be solved analytically to illustrate various fluctuation theorems. These fluctuation theorems provide symmetries individually to the distributions of physical quantities like the classical work (WcW_c), thermodynamic work (WW), total entropy (Δstot\Delta s_{tot}) and dissipated heat (QQ), when the system is driven arbitrarily out of equilibrium. All these quantities can be defined for individual trajectories. We have studied the number of trajectories which exhibit behaviour unexpected at the macroscopic level. As the time of observation increases, the fraction of such atypical trajectories decreases, as expected at macroscale. Nature of distributions for the thermodynamic work and the entropy production in nonlinear models may exhibit peak (most probable value) in the atypical regime without violating the expected average behaviour. However, dissipated heat and classical work exhibit peak in the regime of typical behaviour only.Comment: 14 pages, 7 figure

    Transverse Energy Measurement in Au+Au Collisions by the STAR Experiment

    Full text link
    Transverse energy (ETE_T) has been measured with both of its components, namely hadronic (EThadE_T^{had}) and electromagnetic (ETemE_T^{em}) in a common phase space at mid-rapidity for 62.4 GeV Au+Au collisions by the STAR experiment. ETE_T production with centrality and sNN\sqrt{s_{NN}} is studied with similar measurements from SPS to RHIC and is compared with a final state gluon saturation model (EKRT). The most striking feature is the observation of a nearly constant value of ET/Nch0.8E_T/N_{ch} \sim 0.8 GeV from AGS, SPS to RHIC. The initial energy density estimated by the boost-invariant Bjorken hydrodynamic model, is well above the critical density for a deconfined matter of quarks and gluons predicted by lattice QCD calculations.Comment: 4 pages, 10 figures, Presented in Quark Matter 2008, Jaipur, India. To be published in Indian Journal of Physic

    Quantum Entropy Function from AdS(2)/CFT(1) Correspondence

    Get PDF
    We review and extend recent attempts to find a precise relation between extremal black hole entropy and degeneracy of microstates using AdS_2/CFT_1 correspondence. Our analysis leads to a specific relation between degeneracy of black hole microstates and an appropriately defined partition function of string theory on the near horizon geometry, -- named the quantum entropy function. In the classical limit this reduces to the usual relation between statistical entropy and Wald entropy.Comment: LaTeX file, 27 pages, A modified and extended version of the talk given at Strings 200

    Frequency-Dependent Current Noise through Quantum-Dot Spin Valves

    Full text link
    We study frequency-dependent current noise through a single-level quantum dot connected to ferromagnetic leads with non-collinear magnetization. We propose to use the frequency-dependent Fano factor as a tool to detect single-spin dynamics in the quantum dot. Spin precession due to an external magnetic and/or a many-body exchange field affects the Fano factor of the system in two ways. First, the tendency towards spin-selective bunching of the transmitted electrons is suppressed, which gives rise to a reduction of the low-frequency noise. Second, the noise spectrum displays a resonance at the Larmor frequency, whose lineshape depends on the relative angle of the leads' magnetizations.Comment: 12 pages, 15 figure

    Interobserver Agreement of Novel Classification of Central Serous Chorioretinopathy

    Get PDF
    Objective To validate the newly proposed multimodal-imaging-based classification for central serous chorioretinopathy (CSCR). Methods This was a retrospective study performed in a total of 87 eyes of 44 patients with a diagnosis of CSCR. Multimodal images in the form of auto-fluorescence, fundus fluorescein angiography, indocyanine green angiography, and optical coherence tomography (OCT) images, of all the patients, were presented to two masked retina specialists. The masked observers graded each eye into simple or complex; primary, recurrent, resolved; and specific features such as foveal involvement, outer retinal atrophy, and choroidal neovascularization (CNV). Interobserver agreement was assessed using Cohen's kappa. In areas of non-consensus, a detailed discussion was carried out with a third independent grader. Results The mean age of the 44 patients (32 males and 12 females) was 49.2±9.3 years. We found a moderate-strong agreement between the two observers in all subclassifications, that included "simple or complex" (kappa value=0.91, 95% CI 0.82-0.99, p<0.001); "primary/recurrent/resolved" (kappa value=0.88, 95% CI 0.80-0.96, p<0.001) and "foveal involvement" (kappa value=0.89,95%CI 0.8-0.98, p<0.001). However, there was less agreement between the two graders with respect to classification of "outer retinal atrophy" (kappa value=0.72, 95%CI 0.57-0.87, p<0.001) and "presence/absence of CNV" (kappa value=0.75, 95% CI 0.58-0.92, p<0.001). Non-consensus in categorizing "outer retinal atrophy" was seen in eyes with sub-retinal hyper-reflective material (SHRM) and outer nuclear layer (ONL) thinning overlying subretinal fluid, and non-consensus in categorizing "CNV" was seen in eyes with inner choroidal atrophy. Conclusion Our study reports the validity and strong interobserver agreement in several aspects of the multimodal-imaging-based classification. This could support its implementation in clinical practice and pave way for appropriate treatment guidelines

    A charged particle in a magnetic field - Jarzynski Equality

    Full text link
    We describe some solvable models which illustrate the Jarzynski theorem and related fluctuation theorems. We consider a charged particle in the presence of magnetic field in a two dimensional harmonic well. In the first case the centre of the harmonic potential is translated with a uniform velocity, while in the other case the particle is subjected to an ac force. We show that Jarzynski identity complements Bohr-van Leeuwen theorem on the absence of diamagnetism in equilibrium classical system.Comment: 5 pages, minor corrections made and journal reference adde
    corecore