16 research outputs found

    Copy number variations in the gene space of Picea glauca

    Get PDF
    Les variations de nombre de copies (VNCs) sont des variations gĂ©nĂ©tiques de grande taille qui ont Ă©tĂ© dĂ©tectĂ©es parmi les individus de tous les organismes multicellulaires examinĂ©s Ă  ce jour. Ces variations ont un impact considĂ©rable sur la structure et la fonction des gĂšnes et ont Ă©tĂ© impliquĂ©es dans le contrĂŽle de diffĂ©rents traits phĂ©notypiques. Chez les plantes, les caractĂ©ristiques gĂ©nĂ©tiques des VNCs sont encore peu caractĂ©risĂ©es et les connaissances concernant les VNCs sont encore plus limitĂ©es chez les espĂšces arborescentes. Les objectifs principaux de cette thĂšse consistaient i) au dĂ©veloppement d’une approche pour la dĂ©tection de VNCs dans l’espace gĂ©nique de conifĂšres arborescents appartenant Ă  l’espĂšce P. glauca, ii) Ă  l’estimation du taux de mutation des VNCs Ă  l’échelle du gĂ©nome et iii) Ă  l’examen des profils de transmission des VNCs d’une gĂ©nĂ©ration Ă  la suivante. Nous avons utilisĂ© des donnĂ©es brutes de gĂ©notypage par puces de SNPs qui ont Ă©tĂ© gĂ©nĂ©rĂ©es pour 3663 individus appartenant Ă  55 familles biparentales, et avons examinĂ© plus de 14 000 gĂšnes pour identifier des VNCs. Nos rĂ©sultats montrent que les VNCs affectent une petite proportion de l’espace gĂ©nique. Les polymorphismes de nombre de copies observĂ©s chez les descendants Ă©taient soit hĂ©ritĂ©s soit gĂ©nĂ©rĂ©s par des mutations spontanĂ©es. Notre analyse montre aussi que les estimĂ©s du taux de mutation couvrent au moins trois ordres de grandeur, pouvant atteindre de hauts niveaux et variant pour diffĂ©rents gĂšnes, allĂšles et classes de VNCs. Le taux de mutation du nombre de copies Ă©tait aussi corrĂ©lĂ© au niveau d’expression des gĂšnes et la relation entre le taux de mutation et l’expression des gĂšnes Ă©tait mieux expliquĂ©e dans le cadre de l’hypothĂšse de barriĂšre par la dĂ©rive gĂ©nĂ©tique. Concernant l’hĂ©rĂ©ditĂ© des VNCs, nos rĂ©sultats montrent que la plupart de ces derniers (70%) sont transmises en violation des lois mendĂ©liennes de l’hĂ©rĂ©ditĂ©. La majoritĂ© des distorsions de transmission favorisaient la transmission d’une copie et contribuaient Ă  la restauration rapide du gĂ©notype Ă  deux-copies dans la gĂ©nĂ©ration suivante. Les niveaux de distorsion observĂ©s variaient considĂ©rablement et Ă©taient influencĂ©s par des effets parentaux et des effets liĂ©s au contexte gĂ©nĂ©tique. Nous avons aussi identifiĂ© des situations oĂč la perte d’une copie de gĂšne Ă©tait favorisĂ©e et soumise Ă  diffĂ©rentes formes de pressions sĂ©lectives. Cette Ă©tude montre que les mutations de novo et les distorsions de transmission de VNCs influencent la diversitĂ© gĂ©nĂ©tique prĂ©sente chez une espĂšce et jouent un rĂŽle important dans l’adaptation et l’évolution.Copy number variations (CNVs) are large genetic variations detected among the individuals of every multicellular organism examined so far. These variations have a considerable impact on gene structure and function and have been shown to be involved in the control of several phenotypic traits. In plants, the key genetic features of CNVs are still poorly understood and even less is known about CNVs in trees. The goals of this thesis were to i) develop an approach for the identification of CNVs in the gene space of the conifer tree Picea glauca, ii) estimate the rate of CNV generation genome-wide and iii) examine the transmission patterns of CNVs from one generation to the next. We used SNP-array raw intensity genotyping data for 3663 individuals belonging to 55 full-sib families to scan more than 14 000 genes for CNVs. Our findings show that CNVs affect a small proportion of the gene space and copy number variants detected in the progeny were either inherited or generated through de novo events. Our analyses show that copy number (CN) mutation rate estimates spanned at least three orders of magnitude, could reach high levels and varied for different genes, alleles and CNV classes. CN mutation rate was also correlated with gene expression levels and the relationship between mutation rate and gene expression was best explained within the frame of the drift-barrier hypothesis (DBH). With regard to CNV inheritance, our results show that most CNVs (70%) are transmitted from the parents in violation of Mendelian expectations. The majority of transmission distortions favored the one-copy allele and contributed to the rapid restoration of the two-copy genotype in the next generation. The observed distortion levels varied considerably and were influenced by parental, partner genotype and genetic background effects. We also identified instances where the loss of a gene copy was favored and subject to different types of selection pressures. This study shows that de novo mutations and transmission distortions of CNVs contribute both to the shaping of the standing genetic variation and play an important role in species adaptation and evolution

    The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates

    Get PDF
    Background: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. Results: Single nucleotide variants (P = 7.0 × 10–03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10–06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10–05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10–09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. Conclusions: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches

    Genomic evolution shapes prostate cancer disease type

    Get PDF
    H.R.F. was supported by a Cancer Research UK Programme Grant to Simon Tavaré (C14303/A17197), as, partially, was A.G.L. A.G.L. acknowledges the support of the University of St Andrews. A.G.L. and J.H.R.F. also acknowledge the support of the Cambridge Cancer Research Fund.The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Aalternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.Peer reviewe

    The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates

    Get PDF
    Background: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. Results: Single nucleotide variants (P = 7.0 × 10–03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10–06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10–05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10–09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. Conclusions: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.publishedVersionPeer reviewe

    The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates.

    Get PDF
    BACKGROUND: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS: Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches

    Additional file 2 of The architecture of clonal expansions in morphologically normal tissue from cancerous and non-cancerous prostates

    No full text
    Additional file 2: Supplementary Figure 1. Age vs number of SNVs detected for normal tissue from Prostate cancer patients and non-prostate cancer donors. For the non-cancer donors, the number of SNVs detected is remarkably consistent (range: 104 to 159), apart from one outlier from a cystoprostatectomy with an exceptionally high number of mutations (1202) that is uniquely classified as BPH. There is no significant correlation in the non-cancer donors between age and SNVs (ρ = -0.015, P = 0.98, Spearman’s correlation; this is retained even when the outlier is included: ρ = 0.49, P = 0.27). The number of SNVs detected for non-cancer patients is over 100 SNVs lower than all prostate cancer patients except for one prostate cancer outlier, even in the three samples which are of similar age to the prostate cancer cohort. Looking at only samples in the range 50-73 there is a statistically significant difference in the number of SNVs in prostate cancer vs non-prostate cancer donors (P = 0.0093; Wilcoxon rank sum test; excluding the normal outlier). Supplementary Figure 2. Example density plots of cell cultured fibroblasts and morphologically normal samples from patients where phylogenies could not be reconstructed due to only having one sample per patient or no detected clonal expansions under positive selection. They show the posterior distribution of the fraction of cells bearing a mutation, modelled by a one-dimensional Bayesian Dirichlet process [43]. The median density is indicated by the purple line and 95% confidence intervals by the blue region. The grey histogram shows the observed frequency density of mutations as a function of the fraction of cells bearing the mutation. Supplementary Figure 3. Subclonal architecture of patients with morphologically normal and matched tumour (N-T). Phylogenies revealing the relationships between clones for each case. Each coloured line represents a clone/subclone detected in a particular sample. When two or more coloured lines are together, they represent a clone that is found in all the samples represented. The length of the line is proportional to the weighted number of single nucleotide variants present in each clone; the thickness represents the clonal cell fraction associated with that clone (more detail in Additional file 3). Dotted lines are associated with samples that have no evidence of a unique sample specific clone. Supplementary Figure 4. The relationship between the clonal cell fraction (CCF) and the type of normal samples. Boxplots showing the distribution of estimated CCF for each clone detected and the type of normal sample (non-BPH normal tissue, normal tissue with BPH and BPH fibroblasts). Supplementary Table 1. Summary of patients with multiple normal samples. Patients 0006, 0007 and 0008 have multiple samples from non-BPH normal and tumour tissue and patients 0065, 0073 and 0077 have a sample from non-BPH and BPH normal tissue. Supplementary Table 2. The number of mutations in common between normal samples from the same donor. Supplementary Table 3. The mutation characteristics of three groups of samples defined by the proportion of genome affected by copy number alterations. Group 1: Tumour samples examined by Wedge et al. [30] with less than 6% of the genome affected by CNAs; Group 2: Tumour samples examined by Wedge et al. [30] with more than 6% of the genome affected by CNAs; and Group 3: normal samples examined in our study where no CNAs were detected. The median number of SNVs and indels are shown for each group
    corecore