5,080 research outputs found

    Plasma biomarkers of brain injury in COVID-19 patients with neurological symptoms

    Get PDF
    Objective: Neurological symptoms (NS) were often reported in COVID-19 infection. We examined the plasma levels of glial fibrillary acidic protein (GFAP) and S100B together, as brain injury biomarkers, in relation to persistent NS in a cohort of patients with COVID-19 during the acute phase of the disease.Methods: A total of 20 healthy controls and 58 patients with confirmed COVID-19 were enrolled in this prospective study. Serum GFAP and S100B levels were measured by using enzymle linked immunoassay method from blood samples.Results: Serum GFAP levels were found to be significantly higher in the severe group than in the controls (p = 0.007). However, serum S100B levels were similar between control and disease groups (p > 0.05). No significant results for GFAP and S100B were obtained between the disease groups depending on whether the sampling time was below or above 5 days (p > 0.05). We did not find a correlation between serum GFAP and S100B levels and the presence of NS (p > 0.05). However, serum S100B levels were slightly higher in patients with multiple NS than in those with a single symptom (p = 0.044).Conclusions: Elevated GFAP was associated with disease severity but not with NS in COVID-19 patients. Whereas, high serum S100B was associated with the multipl NS in these patients. Our data suggest that GFAP and S100B may be of limited value currently in order to represent the neuronal damage, though serving a basis for the future work

    Shell Evolution towards Ni 78: Low-Lying States in Cu 77

    Get PDF
    The level structure of the neutron-rich Cu77 nucleus is investigated through β-delayed γ-ray spectroscopy at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. Ions of Ni77 are produced by in-flight fission, separated and identified in the BigRIPS fragment separator, and implanted in the WAS3ABi silicon detector array, surrounded by Ge cluster detectors of the EURICA array. A large number of excited states in Cu77 are identified for the first time by correlating γ rays with the β decay of Ni77, and a level scheme is constructed by utilizing their coincidence relationships. The good agreement between large-scale Monte Carlo shell model calculations and experimental results allows for the evaluation of the single-particle structure near Ni78 and suggests a single-particle nature for both the 5/21- and 3/21- states in Cu77, leading to doubly magic Ni78. © 2017 American Physical Society

    Mechanical and Electronic Properties of MoS2_2 Nanoribbons and Their Defects

    Get PDF
    We present our study on atomic, electronic, magnetic and phonon properties of one dimensional honeycomb structure of molybdenum disulfide (MoS2_2) using first-principles plane wave method. Calculated phonon frequencies of bare armchair nanoribbon reveal the fourth acoustic branch and indicate the stability. Force constant and in-plane stiffness calculated in the harmonic elastic deformation range signify that the MoS2_2 nanoribbons are stiff quasi one dimensional structures, but not as strong as graphene and BN nanoribbons. Bare MoS2_2 armchair nanoribbons are nonmagnetic, direct band gap semiconductors. Bare zigzag MoS2_2 nanoribbons become half-metallic as a result of the (2x1) reconstruction of edge atoms and are semiconductor for minority spins, but metallic for the majority spins. Their magnetic moments and spin-polarizations at the Fermi level are reduced as a result of the passivation of edge atoms by hydrogen. The functionalization of MoS2_2 nanoribbons by adatom adsorption and vacancy defect creation are also studied. The nonmagnetic armchair nanoribbons attain net magnetic moment depending on where the foreign atoms are adsorbed and what kind of vacancy defect is created. The magnetization of zigzag nanoribbons due to the edge states is suppressed in the presence of vacancy defects.Comment: 11 pages, 5 figures, first submitted at November 23th, 200

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+eUγe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings λ0,1P4×1011\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+eUγe^+ e^-\to {\cal U} \gamma and we get λT6×106\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure

    Constraints from Solar and Reactor Neutrinos on Unparticle Long-Range Forces

    Full text link
    We have investigated the impact of long-range forces induced by unparticle operators of scalar, vector and tensor nature coupled to fermions in the interpretation of solar neutrinos and KamLAND data. If the unparticle couplings to the neutrinos are mildly non-universal, such long-range forces will not factorize out in the neutrino flavour evolution. As a consequence large deviations from the observed standard matter-induced oscillation pattern for solar neutrinos would be generated. In this case, severe limits can be set on the infrared fix point scale, Lambda_u, and the new physics scale, M, as a function of the ultraviolet (d_UV) and anomalous (d) dimension of the unparticle operator. For a scalar unparticle, for instance, assuming the non-universality of the lepton couplings to unparticles to be of the order of a few per mil we find that, for d_UV=3 and d=1.1, M is constrained to be M > O(10^9) TeV (M > O(10^10) TeV) if Lambda_u= 1 TeV (10 TeV). For given values of Lambda_u and d, the corresponding bounds on M for vector [tensor] unparticles are approximately 100 [3/Sqrt(Lambda_u/TeV)] times those for the scalar case. Conversely, these results can be translated into severe constraints on universality violation of the fermion couplings to unparticle operators with scales which can be accessible at future colliders.Comment: 13 pages, 3 figures. Minor changes due to precision in numerical factors and correction in figure labels. References added. Conclusions remain unchange

    Field-based tests for the assessment of physical fitness in children and adolescents practicing sport: A systematic review within the ESA program

    Get PDF
    High levels of physical fitness (PF) can positively affect both health and cognitive function, thus monitoring its levels in youth can help increase health and quality of life in adult populations later on. This systematic review aims to identify PF field-based tests used in young European populations practicing sport to find tools that are adequate for the considered target involving a new battery within the Enriched Sport Activities (ESA) project. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed. In the 83 identified articles, the main tests used were: vertical/horizontal jumps (for muscular strength/power); push-ups, running at maximum effort, sit-ups (for muscular strength/endurance); multistage non-intermittent and intermittent tests (for aerobic endurance); sit and reach (for flexibility); sprinting and agility T-tests (for speed and agility, respectively); 10 x 5 m shuttle run (SR) (for both speed and agility). Few studies assessed coordination, reaction time, power, and balance. Although the selected tests are widely used and validated, they do not determine all PF aspects and do not reflect sport-specific features. A final decision was made for the inclusion of the following tests: standing broad jump, seated medicine ball throw, 20 m SR test, 30 m sprint, Illinois test, and a new test, i.e., the crunning test, to assess different skill-related components at once. The use of this combination of tests allows for the assessment of all PF components and can help planning eective training programs and cultivate sporting talent

    Kagome silicene: a novel exotic form of two-dimensional epitaxial silicon

    Full text link
    Since the discovery of graphene, intensive efforts have been made in search of novel two-dimensional (2D) materials. Decreasing the materials dimensionality to their ultimate thinness is a promising route to unveil new physical phenomena, and potentially improve the performance of devices. Among recent 2D materials, analogs of graphene, the group IV elements have attracted much attention for their unexpected and tunable physical properties. Depending on the growth conditions and substrates, several structures of silicene, germanene, and stanene can be formed. Here, we report the synthesis of a Kagome lattice of silicene on aluminum (111) substrates. We provide evidence of such an exotic 2D Si allotrope through scanning tunneling microscopy (STM) observations, high-resolution core-level (CL) and angle-resolved photoelectron spectroscopy (ARPES) measurements, along with Density Functional Theory calculations.Comment: 13 pages, 6 figure

    Ion size effects at ionic exclusion from dielectric interfaces and slit nanopores

    Full text link
    A previously developed field-theoretic model [R.D. Coalson et al., J. Chem. Phys. 102, 4584 (1995)] that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. We show that in the dilute limit, the MF and the variational theories agree well with MC simulation results, in contrast to a recent RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions towards the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. We also characterize the role played by the ion size on the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibits a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones

    Riemannian submersions from almost contact metric manifolds

    Full text link
    In this paper we obtain the structure equation of a contact-complex Riemannian submersion and give some applications of this equation in the study of almost cosymplectic manifolds with Kaehler fibres.Comment: Abh. Math. Semin. Univ. Hamb., to appea
    corecore