12,781 research outputs found
Photoproduction of mixed radions at a proton-proton collider
We investigate Higgs-radion mixing scenario through single radion
photoproduction process at the LHC where
represents the remnants of one of the initial protons. We consider high
luminosity values of , and
. We obtain bounds on the mixing parameter space by considering
, and decay channels of the radion
as the signal. We also perform a similar analysis for a 100 TeV future
proton-proton collider and compare its potential with that of LHC.Comment: 25 pages, 13 figure
Electronic and Magnetic Properties of 1T-TiSe2 Nanoribbons
Motivated by the recent synthesis of single layer TiSe2 , we used
state-of-the-art density functional theory calculations, to investigate the
structural and electronic properties of zigzag and armchair- edged nanoribbons
of this material. Our analysis reveals that, differing from ribbons of other
ultra-thin materials such as graphene, TiSe2 nanoribbons have some distinctive
properties. The electronic band gap of the nanoribbons decreases exponentially
with the width and vanishes for ribbons wider than 20 Angstroms. For
ultranarrow zigzag-edged nanoribbons we find odd-even oscillations in the band
gap width, although their band structures show similar features. Moreover, our
detailed magnetic-ground-state analysis reveals that zigzag and armchair edged
ribbons have nonmagnetic ground states. Passivating the dangling bonds with
hydrogen at the edges of the structures influences the band dispersion. Our
results shed light on the characteristic properties of T phase nanoribbons of
similar crystal structures.Comment: 8 pages, 9 figures, accepted paper on IOP 2D Material
Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The paper presents a study of the generation of hydrodynamic bubbly cavitation in microchannels to investigate the destructive energy output resulting from this phenomenon and its potential use in biomedical applications. The research performed in this study includes the experimental results from bubbly cavitation experiments and the findings showing the destructive effects of bubbly cavitating flow on selected specimens and cells. The bubbles caused by hydrodynamic cavitation are highly destructive at the surfaces of the target medium on which they are carefully focused. The resulting destructive energy output could be effectively used for good means such as destroying kidney stones or killing infected cancer cells. Motivated by this potential, the cavitation damage (material removal) to cancerous cells and chalk pieces having similar material properties as calcium phosphate in human bones was investigated. Also the potential of hydrodynamic bubbly cavitation generated at the microscale for biomedical treatments was revealed using the microchannel configuration of a microorifice (with an inner diameter of 0.147 mm and a length of 1.52cm).This work was supported by Sabancı University Internal Grant for Research Program under Grant FRG-C47004
Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores
A variational theory is developed to study electrolyte solutions, composed of
interacting point-like ions in a solvent, in the presence of dielectric
discontinuities and charges at the boundaries. Three important and non-linear
electrostatic effects induced by these interfaces are taken into account:
surface charge induced electrostatic field, solvation energies due to the ionic
cloud, and image charge repulsion. Our variational equations thus go beyond the
mean-field theory. The influence of salt concentration, ion valency, dielectric
jumps, and surface charge is studied in two geometries. i) A single neutral
air-water interface with an asymmetric electrolyte. A charge separation and
thus an electrostatic field gets established due to the different image charge
repulsions for coions and counterions. Both charge distributions and surface
tension are computed and compared to previous approximate calculations. For
symmetric electrolyte solutions close to a charged surface, two zones are
characterized. In the first one, with size proportional to the logarithm of the
coupling parameter, strong image forces impose a total ion exclusion, while in
the second zone the mean-field approach applies. ii) A symmetric electrolyte
confined between two dielectric interfaces as a simple model of ion rejection
from nanopores. The competition between image charge repulsion and attraction
of counterions by the membrane charge is studied. For small surface charge, the
counterion partition coefficient decreases with increasing pore size up to a
critical pore size, contrary to neutral membranes. For larger pore sizes, the
whole system behaves like a neutral pore. The prediction of the variational
method is also compared with MC simulations and a good agreement is observed.Comment: This version is accepted for publication in Phys. Rev. E
Ionic Capillary Evaporation in Weakly Charged Nanopores
Using a variational field theory, we show that an electrolyte confined to a
neutral cylindrical nanopore traversing a low dielectric membrane exhibits a
first-order ionic liquid-vapor pseudo-phase-transition from an
ionic-penetration "liquid" phase to an ionic-exclusion "vapor" phase,
controlled by nanopore-modified ionic correlations and dielectric repulsion.
For weakly charged nanopores, this pseudotransition survives and may shed light
on the mechanism behind the rapid switching of nanopore conductivity observed
in experiments.Comment: This version is accepted for publication in PR
Theoretical investigation of finite size effects at DNA melting
We investigated how the finiteness of the length of the sequence affects the
phase transition that takes place at DNA melting temperature. For this purpose,
we modified the Transfer Integral method to adapt it to the calculation of both
extensive (partition function, entropy, specific heat, etc) and non-extensive
(order parameter and correlation length) thermodynamic quantities of finite
sequences with open boundary conditions, and applied the modified procedure to
two different dynamical models. We showed that rounding of the transition
clearly takes place when the length of the sequence is decreased. We also
performed a finite-size scaling analysis of the two models and showed that the
singular part of the free energy can indeed be expressed in terms of an
homogeneous function. However, both the correlation length and the average
separation between paired bases diverge at the melting transition, so that it
is no longer clear to which of these two quantities the length of the system
should be compared. Moreover, Josephson's identity is satisfied for none of the
investigated models, so that the derivation of the characteristic exponents
which appear, for example, in the expression of the specific heat, requires
some care
Optical implementations of two-dimensional fractional Fourier transforms and linear canonical transforms with arbitrary parameters
Cataloged from PDF version of article.We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We
not only allow the fractional Fourier transform orders to be specified independently for the two dimensions
but also allow the input and output scale parameters and the residual spherical phase factors to be
controlled. We further discuss systems that do not allow all these parameters to be controlled at the
same time but are simpler and employ a fewer number of lenses. The variety of systems discussed and
the design equations provided should be useful in practical applications for which an optical fractional
Fourier transforming stage is to be employed. © 1998 Optical Society of Americ
- …
