Using a variational field theory, we show that an electrolyte confined to a
neutral cylindrical nanopore traversing a low dielectric membrane exhibits a
first-order ionic liquid-vapor pseudo-phase-transition from an
ionic-penetration "liquid" phase to an ionic-exclusion "vapor" phase,
controlled by nanopore-modified ionic correlations and dielectric repulsion.
For weakly charged nanopores, this pseudotransition survives and may shed light
on the mechanism behind the rapid switching of nanopore conductivity observed
in experiments.Comment: This version is accepted for publication in PR