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We provide a general treatment of optical two-dimensional fractional Fourier transforming systems. We
not only allow the fractional Fourier transform orders to be specified independently for the two dimen-
sions but also allow the input and output scale parameters and the residual spherical phase factors to be
controlled. We further discuss systems that do not allow all these parameters to be controlled at the
same time but are simpler and employ a fewer number of lenses. The variety of systems discussed and
the design equations provided should be useful in practical applications for which an optical fractional
Fourier transforming stage is to be employed. © 1998 Optical Society of America
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1. Introduction

The fractional Fourier transform has received consid-
erable attention since 1993.1–13 Several applica-
tions of the fractional Fourier transform have been
suggested. In particular, many signal- and image-
processing applications have been developed on the
basis of the fractional Fourier transform.14–25 Sev-
eral two-dimensional ~2-D! optical implementations
have been discussed previously,1,4,6,8,11,26–28 but a
comprehensive and systematic treatment did not ex-
ist until Ref. 29, in which we provided a detailed
examination of the 2-D fractional Fourier transform.

In this paper we provide a very general treatment of
optical 2-D fractional Fourier transforming systems.
We allow the fractional Fourier transform orders to be
specified independently for the two dimensions. We
also allow the input and output scale parameters and
the residual spherical phase factors to be controlled.
We further discuss systems that do not allow all of
these parameters to be controlled at the same time but
are simpler and employ a fewer number of lenses.

When this research was performed, A. Sahin and H. M. Ozaktas
were with the Department of Electrical Engineering, Bilkent Uni-
versity, TR-06533 Bilkent, Ankara, Turkey; D. Mendlovic was with
the Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv,
Israel. A. Sahin is now with the Department of Economics, Uni-
versity of Rochester, Rochester, New York 14627.

Received 17 June 1997; revised manuscript received 4 December
1997.

0003-6935y98y112130-12$15.00y0
© 1998 Optical Society of America
ol. 37, No. 11 y 10 April 1998
We begin by reviewing the properties of the 2-D
fractional Fourier transform. Some of these are
trivial extensions of the corresponding one-
dimensional ~1-D! property or have been discussed
elsewhere, although they do not appear collectively in
any single source. For this reason we list them with
minimum comment.

In Section 3 we present optical realizations of linear
canonical transforms. Since linear canonical trans-
forms can be interpreted as scaled fractional Fourier
transforms with additional phase terms, these systems
can realize fractional Fourier transforms with desired
orders, scale factors, and residual phase terms. In
Section 4 we consecutively consider systems with two,
four, and six cylindrical lenses. In each case we dis-
cuss which parameters it is possible to specify inde-
pendently and which parameters we have no control
over. One can choose from among these systems the
one that provides the required flexibility with the min-
imum number of lenses.

2. Two-Dimensional Fractional Fourier Transform

The 2-D fractional Fourier transform with the orders
ax for the x axis and ay for the y axis, for 0 , uaxu , 2
and 0 , uayu , 2, respectively, is defined as

^ax,ay@ f ~x, y!#~x, y! 5 *
2`

`

*
2`

`

Bax,ay
~x, y; x9, y9!

3 f ~x9, y9!dx9dy9, (1)
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where

Bax,ay
~x, y; x9, y9! 5 Bax

~x, x9!Bay
~y, y9!, (2)

Bax
~x, x9! 5 Afx

exp@ip~x2 cot fx

2 2xx9 csc fx 1 x92 cot fx!#, (3)

Bay
~y, y9! 5 Afy

exp@ip~y2 cot fy

2 2yy9 csc fy 1 y92 cot fy!#, (4)

Afx
5

exp@2i~pf̂xy4 2 fxy2!#

~usin fxu!1y2 ,

Afy
5

exp@2i~pf̂yy4 2 fyy2!#

~usin fyu!1y2 , (5)

fx 5 axpy2, fy 5 aypy2, f̂x 5 sgn~fx!, and f̂y 5
sgn~fy!. As Eq. ~2! suggests, the kernel Bax,ay

is a
separable kernel.

The definition may be simplified by use of vector-
matrix notation:

^@ f ~r!#~r! 5 *
2`

`

Afr
exp@ip~rTCtr 2 2rTCsr*

1 r*TCtr*!#f ~r*!dr*, (6)

where

Afr
5 Afx

Afy
, r 5 @x y#T, r* 5 @x9 y9#T,

Ct 5 F cot fx 0
0 cot fy

G , Cs 5 F csc fx 0
0 csc fy

G.

Two- ~and higher-! dimensional30 fractional Fourier
transforms were first considered with equal orders
ax 5 ay, and their optical implementations involved
spherical lenses and graded-index media ~see the ref-
erences in the first paragraph of Section 1!. The
possibility of different orders was mentioned in Ref. 4
and discussed in Refs. 26–28.

A. Properties of Two-Dimensional Fractional Fourier
Transforms

Most of the following properties are straightforward
generalizations of the 1-D versions.31–33

1. Additivity

^ax1,ay1^ax2,ay2f ~x, y! 5 ^ax11ax2,ay11ay2f ~x, y!. (7)

2. Linearity
For arbitrary constants ck we find

^ax,ay (
k

ck f ~x, y! 5 (
k

ck^
ax,ayf ~x, y!. (8)

3. Separability
If f ~x, y! 5 f ~x! f ~y!, then

^ax,ayf ~x, y! 5 @^axf ~x!#@^ayf ~y!#. (9)
4. Inverse Transform

Bax,ay

21~x, y; x9, y9! 5 B2ax,2ay
~x, y; x9, y9!. (10)

5. Unitarity
The 2-D kernel is unitary, as shown by

Bax,ay

21~x9, y9; x, y! 5 B2ax,2ay
~x9, y9; x, y!

5 B*ax,ay
~x, y; x9, y9!, (11)

where the asterisk denotes the complex conjugate.

6. Parseval Relation

*
2`

`

*
2`

`

f ~r*!*g~r*!dr* 5 *
2`

`

*
2`

`

$^ax,ayf ~r*!%*

3 $^ax,ayg~r*!%dr*, (12)

*
2`

`

*
2`

`

u f ~r*!u2dr* 5 *
2`

`

*
2`

`

u^ax,ayf ~r*!u2dr*. (13)

7. Effect of the Coordinate Shift
The fractional Fourier transform of f ~x 2 x0, y 2 y0!
can be expressed in terms of the fractional Fourier
transform of f ~x, y! as

^ax,ay@ f ~r 2 r0!#~r! 5 expH2i2pFrs
TSr 2

1
2

rcDGJ
3 ^ax,ay@ f ~r!#~r 2 rc!, (14)

where

r0 5 @x0 y0#
T, rc 5 @x0 cos fx y0 cos fy#

T,

rs 5 @x0 sin fx y0 sin fy#
T.

8. Effect of Multiplication by a Complex
Exponential
If a function f ~x, y! is multiplied by an exponential
exp@i2p~mxx 1 myy!#, the resulting fractional Fourier
transform becomes

^ax,ay@exp~i2pmTr! f ~r!# 5 exp$ip@mc
T~ms 1 2r!#%

3 ^ax,ay@ f ~r!#~r 2 ms!, (15)

where

m 5 @mx my#
T, c 5 @mx cos fx my cos fy#

T,

ms 5 @mx sin fx my sin fy#
T.
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9. Multiplication by Powers of the Coordinate
Variables
The fractional Fourier transform of xmynf ~x, y! for m,
n $ 0 is

^ax,ay@xmynf ~x, y!# 5 Sx cos fx 1
i
p

sin fx

]

]xD
m

3 Sy cos fy 1
i
p

sin fy

]

]yD
n

3 ^ax,ayf ~x, y!. (16)

10. Derivative of f~x, y!
The fractional Fourier transform of the term
~]my]mx!~]ny]ny! f ~x, y! is

^ax,ayF ]m

]xm

]n

]yn f ~x, y!G 5 Si2px sin fx 1 cos fx

]

]xD
m

3 Si2py sin fy 1 cos fy

]

]yD
n

3 ^ax,ayf ~x, y!. (17)

11. Scaling
The fractional Fourier transform of f ~kxx, kyy! can be
represented in terms of the fractional Fourier trans-
form of f ~x, y! with different orders ax9 and ay9 as

^ax,ay@ f ~Kr!#~r! 5 C exp~iprTDr!^ax9,ay9@ f ~r!#~K*r!,

(18)

where

C 5
Afx

Afy

ukxuukyuAfx9Afy9

,

K 5 F kx 0
0 ky

G ,

fx9 5 arctan~kx
2 tan fx!, ax9 5

2afx9

p
,

fy9 5 arctan~ky
2 tan fy!, ay9 5

2afy9

p
,

D 5 3 cot fx

kx
4 2 1

kx
4 1 cot2 fx

0

0 cot fy

ky
4 2 1

ky
4 1 cot2 fy

4 ,

K* 5 3
sin fx9

kx sin fx

0

0
sin fy9

ky sin fy

4 .

12. Rotation
Let

R 5 F cos u sin u
2sin u cos u G ;
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then f ~Rr! 5 f ~cos ux 1 sin uy, 2sin ux 1 cos uy!
represents the rotated function with the angle u.
When it is the case that ax 5 ay 5 a, then

^a@ f ~Rr!#~r! 5 ^a~r!~Rr!. (19)

13. Wigner Distribution and Fractional Fourier
Transform
Let Wf~x, y; nx, ny! be the Wigner distribution of f ~x, y!.
If g~x, y! is the fractional Fourier transform of f ~x, y!,
then the Wigner distribution of g~x, y! is related to that
of f ~x, y! through the following:

Wg~r, n! 5 Wf~Ar 1 Bn, Cr 1 Dn!, (20)

where

r 5 @x y#T, n 5 @nx ny#
T, (21)

A 5 F cos fx 0
0 cos fy

G , B 5 F 2sin fx 0
0 2sin fy

G ,

(22)

C 5 F sin fx 0
0 sin fy

G , D 5 F cos fx 0
0 cos fy

G .

(23)

As Eq. ~20! suggests, the effect of the fractional Fou-
rier transform on the Wigner distribution is a coun-
terclockwise rotation with the angle fx in the x–nx
plane and the angle fy in the y–ny plane.

14. Projection
The projection property of a 1-D kernel34 states that
the projection of the Wigner distribution function on
an axis making an angle f with the x axis is the
absolute square of the fractional Fourier transform of
the function with the order a~f 5 apy2!. This effect
can be represented in terms of the Radon transform
as

5f@W~x, n!# 5 u^a@ f ~x!#u2, (24)

where the Radon transform of a 2-D function is its
projection on an axis making an angle f with the x
axis. The separability of the 2-D kernel can be used
to derive the corresponding property for the 2-D case.
If the Radon transform is applied successively to the
Wigner distribution W~x, y; nx, ny!, then the property
becomes

5fy
$5fx

@W~x, y; nx, ny!#% 5 u^ax,ay@ f ~x, y!#u2. (25)

Thus the projection of the Wigner distribution W~x, y;
nx, ny! of any function f ~x, y! on the plane determined
by two lines—the first making an angle fx with the x
axis and the second making an angle fy with the y
axis—is the absolute square of its 2-D fractional Fou-
rier transform with the orders ax and ay.



15. Eigenvalues and Eigenfunctions
Two-dimensional Hermite–Gaussian functions are
eigenfunctions of the 2-D fractional Fourier trans-
form:

*
2`

`

*
2`

`

Bax, ay
~x, y; x9, y9!Cnm~x, y9!dx9dy9

5 lnmCnm~x, y!, (26)

where

Cnm~x, y! 5
21y2

~2n2mn!m!!1y2 Hn~Î2px!Hm~Î2py!

3 exp@2p~x2 1 y2!#, (27)

lnm 5 exp~2ipax ny2!exp~2ipay my2!. (28)

B. Linear Canonical Transforms and Fractional Fourier
Transforms

Fractional Fourier transforms, Fresnel transforms,
chirp multiplication, and scaling operations are used
widely in optics to analyze systems composed of sec-
tions of free space and thin lenses. These linear
integral transforms belong to the class of linear ca-
nonical transforms. The definition for a 2-D linear
canonical transform is

g~x, y! 5 *
2`

`

*
2`

`

h~x, y; x9, y9! f ~x9, y9!dx9dy9,

h~x, y; x9, y9! 5 exp~2ipy4!bx
1y2

3 exp@ip~ax x2 2 2bx xx9 1 gx x92!#

3 exp~2ipy4!by
1y2 exp@ip~ay y2

2 2by yy9 1 gy y92!#, (29)

where ax, bx, gx and ay, by, gy are real constants.
Any linear canonical transform is completely speci-
fied by its parameters. Alternatively, linear canon-
ical transforms can be specified by use of a
transformation matrix. The transformation matrix
of such a system, as specified by the parameters ax,
bx, gx and ay, by, gy, is

T ; 3
Ax 0 Bx 0
0 Ay 0 By

Cx 0 Dx 0
0 Cy 0 Dy

4
; 3

gxybx 0 1ybx 0
0 gyyby 0 1yby

2bx 1 axgxybx 0 axybx 0
0 2by 1 aygyyby 0 ayyby

4 ,

with AxDx 2 BxCx 5 1 and AyDy 2 ByCy 5 1.35,36

Propagation in free space and through thin lenses
can also be analyzed as special forms of linear canon-
ical transforms. Here both the kernels and the
transformation matrices of the optical components
are given. The transformation kernel for free-space
propagation of length d is expressed as

hf~x, y, x9, y9! 5 Kf expHipF~x 2 x9!2

ld
1

~y 2 y9!2

ld GJ ,

(30)

and its corresponding transformation matrix is

Tf~d! 5 3
1 0 ld 0
0 1 0 ld
0 0 1 0
0 0 0 1

4 . (31)

Similarly, the kernel for a cylindrical lens with focal
length fx along the x direction is

hxl~x, y, x9, y9! 5 Kxld~x 2 x9!exp~2ipx2ylfx!, (32)

with its transformation matrix given by

Txl~ fx! 5 3
1 0 0 0
0 1 0 0

21
lfx

0 1 0

0 0 0 1
4 , (33)

and the kernel for a cylindrical lens with a focal
length fy along the y direction is

hyl~x, y, x9, y9! 5 Kyld~y 2 y9!exp~2ipy2ylfy!, (34)

with its transformation matrix given by

Tyl~ fy! 5 3
1 0 0 0
0 1 0 0
0 0 1 0

0
21
lfy

0 1 4 . (35)

More general anamorphic lenses may be represented
by a kernel of the form

hxyl~x, y, x9, y9! 5 Kxyld~x 2 x9, y 2 y9!

3 expF2ipS x2

lfx
1

y2

lfy
1

xy
lfxy

DG , (36)

with the transformation matrix given by

Txyl~ fy! 5 3
0 1 0 0
0 1 0 0

21
lfx

21
2lfxy

1 0

21
2lfxy

21
lfy

0 1
4 . (37)

The transformation-matrix approach is practical in
the analysis of optical systems. First, if several sys-
tems are cascaded the overall system matrix can be
found by multiplication of the corresponding trans-
formation matrices. Second, the transformation
matrix corresponds to the ray–matrix in optics.37
10 April 1998 y Vol. 37, No. 11 y APPLIED OPTICS 2133



Third, the effect of the system on the Wigner distri-
bution of the input function can be expressed in terms
of this transformation matrix. This topic is dis-
cussed extensively in Refs. 35 and 38–41.

We already stated in Section 1 that the fractional
Fourier transform belongs to the family of linear ca-
nonical transforms. So it is possible to calculate the
transformation matrix for the fractional Fourier
transform. Before finding the transformation ma-
trix we modify the definition of the fractional Fourier
transform. In some physical applications it is nec-
essary to introduce input and output scale parame-
ters. It is possible to modify our definition by
inclusion of the scale parameters and also the addi-
tional phase factors that can occur at the output:

Bax,ay
~x, y; x9, y9! 5 Afx

exp~ipx2px!expFipSx2

s2
2 cot fx

2
2xx9

s1 s2
csc fx 1

x92

s1
2 cot fxDG

3 Afy
exp~ipy2py!expFipSy2

s2
2 cot fy

2
2yy9

s1 s2
csc fy 1

y92

s1
2 cot fyDG . (38)

In the definition in Eq. ~38!, s1 stands for the input
scale parameter and s2 stands for the output scale
parameter. With the phase factors px, py and the
scaling factors s1, s2 permitted, the transformation
matrix of the fractional Fourier transform can be
found as

T ; F A B
C D G , (39)

where
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3. Optical Implementation of Linear Canonical
Transforms and Fractional Fourier Transforms by Use
of Canonical Decompositions

In our optical setups we try to control as many pa-
rameters as we can. Following is a list of parame-
ters that we want to control:

• Order parameters ax and ay: The main objec-
tive of designing optical setups is to control the orders
of the fractional Fourier transform. Control of the
order parameters is our primary interest.

• Scale parameters s1 and s2: It is desirable to
specify both the input and the output scale parame-
ters to provide practical setups.

• Additional phase factors px and py: In our de-
signs we try to obtain px 5 py 5 0 to remove the
additional phase factors at the output plane and ob-
serve the fractional Fourier transform on a flat sur-
face.

In all the systems we analyze below we clearly indi-
cate the parameters specified by the designer, the
design parameters, and the uncontrollable outcomes,
if any.

A. One-Dimensional Systems

1. Canonical Decomposition Type 1
The overall system matrix T of the system shown in
Fig. 1 is

T 5 Tf~d2!Txl~ f !Tf~d1!. (44)

Both the optical system depicted in Fig. 1 and the
linear canonical transform have three parameters.
Thus it is possible for one to find the system param-
eters uniquely by solving Eq. ~44!. The equations for
A 5 3
s2

s1
cos fx 0

0
s2

s1
cos fy

4 , (40)

B 5 F s1 s2 sin fx 0
0 s1 s2 sin fy

G , (41)

C 5 3
1

s1 s2
~px cos fx 2 sin fx! 0

0
1

s1 s2
~py cos fy 2 sin fy! 4 , (42)

D 5 3
s1

s2
sin fx~px 1 cot fx! 0

0
s1

s2
sin fy~py 1 cot fy! 4 . (43)



d1, d2, and f in terms of a, b, and g are found as

d1 5
b 2 a

l~b2 2 ga!
, d2 5

b 2 g

l~b2 2 ga!
,

f 5
b

l~b2 2 ga!
. (45)

Since the fractional Fourier transform is a special
form of linear canonical transforms, it is possible to
implement a 1-D fractional Fourier transform of the
desired order by use of this optical setup. The scale
parameters s1 and s2 can be specified by the designer,
and the additional phase factors px and py can be
made equal to zero.

Letting a 5 cot fys2
2, g 5 cot fys1

2, and b 5 csc
fys1s2, one recovers the Lohmann type 1 system that
performs the fractional Fourier transform. In this
case the system parameters are found as

d1 5
~s1 s2 2 s1

2 cos f!

l sin f
, d2 5

~s1 s2 2 s2
2 cos f!

l sin f
,

f 5
s1 s2

l sin f
. (46)

Since the additional phase factors are set to zero, they
do not appear in Eqs. ~46!. However, if one wishes to
set px and py to a value other than zero, it is again
possible if we set a 5 px cot fys2

2 and substitute it
into Eqs. ~45!.

2. Canonical Decomposition Type 2
In this case, instead of one lens and two sections of
free space, we have two lenses separated by a single
section of free space, as shown in Fig. 2. Again, the
parameters d, f1, and f2 are solved for in a manner
similar to that of the type 1 decomposition:

d 5
1

lb
, f1 5

1
l~b 2 g!

, f2 5
1

l~b 2 a!
. (47)

If a 5 cot fys2
2, g 5 cot fys1

2, and b 5 csc fys1s2 are
substituted into Eqs. ~47! the expressions for the frac-
tional Fourier transform can be found. The designer
can again specify the scale parameters, and there is

Fig. 1. Type 1 system that realizes the 1-D linear canonical trans-
form.
no additional phase factor at the output. The sys-
tem parameters are

d 5
s1 s2 sin f

l
, f1 5

s1
2s2 sin f

s1 2 s2 cos f
,

f2 5
s1 s2

2 sin f

s2 2 s1 cos f
. (48)

Equations ~45! and ~47! give the expressions for the
system parameters of type 1 and type 2 systems.
But for some values of a, b, and g, the lengths of the
free-space sections could turn out to be negative,
which is not physically realizable. However, this
constraint restricts the range of linear canonical
transforms that can be realized with the suggested
setups. In Section 3.C this problem is solved by use
of an optical setup that simulates anamorphic and
negative-valued sections of free space. This system
is designed in such a way that its effect is equivalent
to propagation in free space with different ~and pos-
sibly negative! distances along the two dimensions.

B. Optical Implementation of Two-Dimensional Linear
Canonical Transforms and Fractional Fourier Transforms

Here we present an elementary outcome that allows
us to analyze 2-D systems as two 1-D systems. This
result makes the analysis of 2-D systems remarkably
easier. Let

g~r! 5 *
2`

`

h~r, r*! f ~r*!dr*,

where

r 5 @x y#T, r* 5 @x9 y9#T.

If the kernel h~r, r*! is separable, i.e.,

h~r, r*! 5 hx~x, x9!hy~y, y9!, (49)

then the response in the x direction is the result of the
1-D transform

gx~x, y9! 5 *
2`

`

hx~x, x9! f ~x9, y9!dx9 (50)

Fig. 2. Type 2 system that realizes the 1-D linear canonical trans-
form.
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and is similar in the y direction. Moreover, if the
function is also separable, i.e.,

f ~r! 5 fx~x! fy~y!, (51)

the overall response of the system is

g~r! 5 gx~x!gy~y!, (52)

where

gx~x! 5 *
2`

`

hx~x, x9! fx~x9!dx9. (53)

There is a similar expression for the y direction.
This result is easily verified by substitution of Eqs.
~49! and ~51! into Eq. ~53!:

g~r! 5 *
2`

`

*
2`

`

hx~x, x9!hy~y, y9! fx~x9! fy~y9!dx9dy9.

Rearranging the terms will give us the desired out-
come.

The result above has a nice interpretation in optics,
which makes the analysis of 2-D systems easier.
For example, to design an optical setup that realizes
imaging in the x direction and the Fourier transform
in the y direction, one can design two 1-D systems
that realize the given transformations. When these
two systems are merged, the overall effect of the sys-
tem is imaging in the x direction and Fourier trans-
formation in the y direction. Similarly, if we can
find a system that realizes the fractional Fourier
transform with the order ax in the x direction and
another system that realizes the fractional Fourier
transform with the order ay in the y direction, then
these two optical setups together will implement the
2-D fractional Fourier transform. So the problem of
designing a 2-D fractional Fourier transformer re-
duces to the problem of designing two 1-D fractional
Fourier transformers.

1. Canonical Decomposition Type 1
According to the above result, the x and y directions
can be considered independently of each other, since
the kernel given in Eqs. ~29! is separable. Hence if
two optical setups that achieve 1-D linear canonical
transforms are put together, one can implement the
desired 2-D fractional Fourier transform. The sug-
gested optical system is shown in Fig. 3.

The parameters of the type 1 system are as follows:

d1x 5
bx 2 ax

l~bx
2 2 gxax!

, d2x 5
bx 2 gx

l~bx
2 2 gxax!

,

fx 5
bx

l~bx
2 2 gxax!

, (54)

d1y 5
by 2 ay

l~by
2 2 gyay!

, d2y 5
by 2 gy

l~by
2 2 gyay!

,

fy 5
by

l~by
2 2 gyay!

. (55)
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It was discussed in Subsection 2.B that a 2-D frac-
tional Fourier transform is indeed a special linear
canonical system with the parameters

ax 5 cot fxys2
2, gx 5 cot fxys1

2, bx 5 csc fxys1s2,

(56)
ay 5 cot fyys2

2, gy 5 cot fyys1
2, by 5 csc fyys1s2.

(57)

When Eqs. ~56! and ~57! are substituted into Eqs. ~54!
and ~55!, the parameters of the fractional Fourier
transforming optical system can be found. Even
though the analysis is carried out by use of the inde-
pendence of the x and y directions, the total length of
the optical system is fixed. Thus the condition d1x 1
d2x 5 dx 5 d1y 1 d2y 5 dy should always be satisfied.
The other constraint to be satisfied is the positivity of
the lengths of the free-space sections: d1x, d1y, d2x,
and d2y should always be positive. These two con-
straints restrict the set of linear canonical transforms
that can be implemented. The solution to this prob-
lem is to simulate anamorphic sections of free space.
Such simulation provides us with the propagation of
dx in the x direction and of dy in the y direction, where
dx and dy can take negative values. This problem is
solved in Subsection 3.B.

2. Canonical Decomposition Type 2
Two type 2 systems can also perform the desired 2-D
linear canonical transforms. The parameters of the
type 2 system are as follows:

dx 5
1

lbx
, f1x 5

1
l~bx 2 gx!

, f2x 5
1

l~bx 2 ax!
,

(58)

dy 5
1

lby
, f1y 5

1
l~by 2 gy!

, f2y 5
1

l~by 2 ay!
.

(59)

If Eqs. ~56! and ~57! are substituted into Eqs. ~58! and
~59! we have the parameters for the fractional Fou-
rier transform, which is indeed a linear canonical
transform.

The optical setup shown in Fig. 4, with the param-

Fig. 3. Type 1 system that realizes 2-D linear canonical trans-
forms.



eters given in Eqs. ~58! and ~59!, implement the 2-D
linear canonical transform. In this optical setup the
constraint becomes dx 5 dy 5 d, which is even more
restrictive than that for type 1 systems. The terms
dx and dy can again be negative. To overcome these
difficulties, we try to design an optical setup that
simulates anamorphic sections of free space.

C. Simulation of Anamorphic Sections of Free Space

While designing optical setups that implement 1-D
linear canonical transforms we treat the lengths of
the free-space sections as free parameters. But
some linear canonical transforms specified by the pa-
rameters a, g, and b might require the use of free-
space sections with negative length. This problem is
again encountered in the optical setups that achieve
2-D linear canonical transforms. Besides, the 2-D
optical systems require different propagation dis-
tances in the x and the y directions. To implement
all possible 1-D and 2-D linear canonical transforms,
we design an optical system that simulates the de-
sired free space suitable for our purposes. The op-
tical system shown in Fig. 5, which comprises a
Fourier block, an anamorphic lens, and an inverse
Fourier block, simulates 2-D free space with the prop-
agation distance dx in the x direction and dy in the y
direction. We call the optical system shown in Fig. 5
an anamorphic free-space system. When the analy-
sis of the system illustrated in Fig. 5 is carried out,
the relation between the input light distribution f ~x,
y! and the output light distribution g~x, y! is given as

g~x, y! 5 C *
2`

`

*
2`

`

exp@ip~x 2 x9!2yldx

1 ~y 2 y9!2yldy#f ~x9, y9!dx9dy9, (60)

where

dx 5
s4

l2fx
, dy 5

s4

l2fy
, (61)

and s is the scale of the Fourier and the inverse
Fourier blocks. The terms fx and fy can take any real
value, including negative ones. Thus it is possible to
obtain any combination of dx and dy by use of the

Fig. 4. Type 2 system that realizes the 2-D linear canonical trans-
form.
optical setup depicted in Fig. 5. The anamorphic
lens, which is used to control dx and dy, can be com-
posed of two orthogonally situated cylindrical thin
lenses with different focal lengths. The Fourier
block and the inverse Fourier block are 2f systems
with a spherical lens between two sections of free
space. Thus a section of free space uses two cylin-
drical and two spherical lenses.

The system represented in Fig. 5 simulates 2-D
anamorphic free space. The same configuration is
again valid for the 1-D case. When only one lens is
used with the 1-D Fourier and inverse Fourier blocks
it is possible to simulate propagation with negative
distances. When the free-space sections in the type
1 and type 2 systems are replaced with the optical
setup of Fig. 5, optical implementation of all separa-
ble linear canonical transforms can be realized.

Both type 1 and type 2 systems can be used to
implement all combinations of orders when the free-
space sections are replaced with sections of anamor-
phic free space. We have no residual phase factors
at the output. Also, the scale parameters can be
specified by the designer. Thus by use of type 1 and
type 2 systems all combinations of the orders ax and
ay can be implemented with full control of the scale
parameters s1, s2 and the phase factors px, py.

4. Other Optical Implementations of Two-Dimensional
Fractional Fourier Transforms

In Section 3 we presented a method for implementing
the fractional Fourier transform optically. All com-
binations of ax and ay can be implemented with the
proposed setups; however, both systems use six cy-
lindrical lenses. In this section we consider simpler
optical systems having fewer lenses and try to see the
limitations of these systems. We do not attempt to
exhaust all possibilities but offer several systems that
we believe may be useful. Since the problem is
solved in the x and y directions independently, one
lens is not adequate for controlling both directions.
So the simplest setup that we consider has two cylin-
drical lenses.

A. Two-Lens Systems

1. Setup with Six Design Parameters
This setup has the following parameters:

• Parameters specified by the designer: fx, fy,
s1, s2, px, py.

Fig. 5. Optical system that simulates anamorphic free-space
propagation.
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• Design parameters: fx, fy, d1x, d1y, d2x, d2y.
• Uncontrollable outcomes: None.

The optical setup shown in Fig. 5 has six design
parameters, and we also want to specify six param-
eters here. It is possible to solve the design param-
eters in terms of the desired parameters determined
by the designer. However, to produce a realizable
setup, we should satisfy the following constraints:

• The total length of the system should be the
same in both directions: d1x 1 d2x 5 d1y 1 d2y.

• The lengths of all free-space sections should be
positive: d1x $ 0, d1y $ 0, d2x $ 0, and d2y $ 0.

These constraints are too restrictive, and the range of
orders ax and ay that can be implemented is small.
Thus we have to reduce the number of parameters
that we want to control. This method is considered
in Subsection 4.A.2.

2. Setup with Fewer Parameters
This system has the following parameters:

• Parameters specified by the designer: fx, fy,
s1, s2.

• Design parameters: fx, fy, d1x, d1y, d2x, d2y.
• Uncontrollable outcomes: px, py.

In this design both the orders and the scale param-
eters can be specified. For the given parameters fx,
fy and s1, s2, the design parameters are

d1x 5 d1y 5 d1 5
s1

2~sin fy 2 sin fx!

l~cos fy 2 cos fx!
, (62)

d2x 5 d2y 5 d2 5
s1 s2 sin~fx 2 fy!

l~cos fy 2 cos fx!
, (63)

fx 5
s1

2s2 sin~fx 2 fy!

l~s1 2 s2 cos fx!~cos fy 2 cos fx!
, (64)

fy 5
s1

2s2 sin~fx 2 fy!

l~s1 2 s2 cos fy!~cos fy 2 cos fx!
, (65)

and the phase factors at the output plane turn out to
be

px 5
$s2~cos fy 2 cos fx! 1 s1@1 2 cos~fy 2 fx!#%

s1 s2
2 sin~fx 2 fy!

, (66)

py 5
$s2~cos fy 2 cos fx! 1 s1@cos~fy 2 fx! 2 1#%

s1 s2
2 sin~fx 2 fy!

. (67)

In this optical setup d1 and d2 should always be pos-
itive ~see Fig. 6!. But for some values of fx, fy, s1,
and s2, the values of d1 and d2 may turn out to be
negative. In such cases we would have to deal with
virtual objects, virtual images, or both. This would
require the use of additional lenses. To avoid this
we must require that d1 and d2 be positive. This
condition will restrict the ranges of ax and ay that can
2138 APPLIED OPTICS y Vol. 37, No. 11 y 10 April 1998
be realized. These ranges can be maximized if the x
or the y axis is flipped. For instance, if the given
values of d1x, d2x, d1y, and d2y make s1 negative for
fx 5 60 and fy 5 30, we flip one of the axes. This
transform is equivalent to the fractional Fourier
transform, with fx 5 60 and fy 5 210, followed by a
flip of the y axis or to the fractional Fourier trans-
form, with fx 5 240 and fy 5 30, followed by a flip of
the x axis. ~This is because a second-order trans-
form corresponds to a flip of the coordinate axis.! To
implement some orders we must flip both axes. Fig-
ure 7 shows the necessary flip~s! required to realize
different combinations of orders.

The above system allows us to specify the orders
and the scale parameters. However, the phase fac-
tors are arbitrary and out of our control. We should
examine four-lens systems if we wish to control the
orders, the scale parameters, and the phase factors at
the same time.

B. Four-Lens Systems

1. Setup with Adjustable Length
We continue our discussion with the setup shown in
Fig. 8:

• Parameters specified by the designer: fx, fy,
s1, s2, px 5 py 5 0.

Fig. 6. Optical setup with two cylindrical lenses and three sec-
tions of free space.

Fig. 7. Sections A: Neither axis flipped. Sections B: x axis
flipped. Sections C: y axis flipped. Section D: Both axes
flipped.



• Design parameters: d1, d2, fx1, fy1, fx2, fy2.
• Uncontrollable outcomes: None.

In this configuration we use the optical setup de-
picted in Fig. 8. In our design with two lenses ~Sub-
section 4.A!, we managed to design an optical setup
that implements the 2-D fractional Fourier transform
with the orders and scale parameters we desired.
However, additional phase factors at the output
plane turned out to be arbitrary. If two cylindrical
lenses are added to the output plane of the two-lens
system, it is possible to remove the additional phase
factor at the output. In the optical setup of Fig. 8,
d1, d2, fx1, and fx2 have the same expressions as those
for the two-lens system. Thus Fig. 7 is again valid
and shows the necessary flips:

d1x 5 d1y 5 d1 5
s1

2~sin fy 2 sin fx!

l~cos fy 2 cos fx!
, (68)

d2x 5 d2y 5 d2 5
s1 s2 sin~fx 2 fy!

l~cos fy 2 cos fx!
, (69)

fx1 5
s1

2s2 sin~fx 2 fy!

l~s1 2 s2 cos fx!~cos fy 2 cos fx!
, (70)

fy1 5
s1

2s2 sin~fx 2 fy!

l~s1 2 s2 cos fy!~cos fy 2 cos fx!
, (71)

fx2 5
s1 s2

2 sin~fx 2 fy!

l$s2~cos fy 2 cos fx! 1 s1@1 2 cos~fy 2 fx!#%
,

(72)

fy2 5
s1 s2

2 sin~fx 2 fy!

l$s2~cos fy 2 cos fx! 1 s1@cos~fy 2 fx! 2 1#%
.

(73)

This optical setup implements the 2-D fractional Fou-
rier transform with the desired orders, scale param-
eters, and phase factors.

2. Setup with Fixed Length
This system has the following parameters:

• Parameters specified by the designer: fx, fy,
s1, s2, d1, d2, d3.

Fig. 8. Optical setup with four cylindrical lenses and two sections
of free space.
• Design parameters: fx1, fy1, fx2, fy2.
• Uncontrollable outcomes: px, py.

For practical purposes one may want to use a fixed
system in which the lengths of all free-space sections
are fixed. For example, Ref. 26 reports that the 2-D
fractional Fourier transform is implemented by use of
cylindrical lenses with dynamically adjustable focal
lengths in a fixed system. Both the locations of the
lenses and the total length of the system are fixed.
The only design parameters are the focal lengths of
the lenses, which can be changed dynamically.

Here we add one more section of free space to the
system shown in Fig. 8 and obtain the setup shown in
Fig. 9. This fixed system exerts no control over the
phase factors, while the orders and the scale param-
eters can be specified by the designer. The param-
eters are

fx1 5
s1 s2 d2 sin fxyl 2 ~s2ys1!d1 d2 cos fx

~s2ys1!~d1 1 d2!cos fx 2 s1 s2 sin fxyl 1 d3
, (74)

fy1 5
s1 s2 d2 sin fyyl 2 ~s2ys1!d1 d2 cos fy

~s2ys1!~d1 1 d2!cos fy 2 s1 s2 sin fyyl 1 d3
, (75)

fx2 5
d2 d3

~s2ys1!d1 cos fx 2 s1 s2 sin fxyl 1 d2 1 d3
, (76)

fy2 5
d2 d3

~s2ys1!d1 cos fy 2 s1 s2 sin fyyl 1 d2 1 d3
, (77)

and the additional phase factors turn out to be

px 5 2cos fx 1
s2

s1 sin fx
S1 2

d1

fx1
2

d1

fx2
2

d2

fx2
1

d1 d2

fx1fx2
D ,

(78)

py 5 2cos fy 1
s2

s1 sin fy
S1 2

d1

fy1
2

d1

fy2
2

d2

fy2
1

d1 d2

fy1fy2
D .

(79)
This optical setup can be used to realize all combina-
tions of ax and ay; however, there are additional un-
controllable phase factors observed at the output
plane.

C. Six-Lens System

This system has the following parameters:

Fig. 9. Optical setup with four cylindrical lenses and three sec-
tions of free space.
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• Parameters specified by the designer: fx, fy,
s1, s2, d1, d2, d3, px 5 py 5 0.

• Design parameters: fx1, fy1, fx2, fy2.
• Uncontrollable outcomes: None.

The modified type 1 and type 2 systems use six cy-
lindrical lenses. However, the lengths of the free-
space sections are not fixed. For practical purposes,
as we mentioned in Subsection 4.B.2, one may want
to use a fixed system. To have control over all the
parameters, we require a six-lens system. The de-
sign that we made using the four-lens fixed system
has two uncontrollable outcomes: px and py. If two
cylindrical lenses are added to the output plane, full
control over all parameters is achieved.

The system parameters fx1, fy1, f2x, and fy2 are the
same as those for the four-lens fixed system. The
focal lengths of the additional lenses are

fx3 5
1

lpx
, (80)

fy3 5
1

lpy
. (81)

Thus the fixed optical system shown in Fig. 10 can be
used to implement the desired fractional Fourier
transform.

5. Conclusion

We have presented a systematic treatment of the 2-D
fractional Fourier transform and its optical imple-
mentation. We have provided design equations for a
system composed of four cylindrical lenses, in which
the user can specify the transform orders in two di-
mensions, the input and output scale parameters,
and the residual phase factors appearing at the out-
put plane. Many other systems with fewer or more
lenses and with less or more flexibility when specify-
ing parameters have also been discussed.

The systems we discussed in Section 3 are good for
realizing arbitrary linear canonical transforms.
Such transforms are a more general class of trans-
forms than the fractional Fourier transforms.
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