79 research outputs found

    Predictive prey pursuit in a whiskered robot

    Get PDF
    Highly active small mammals need to capture prey rapidly and with a high success rate if they are to survive. We consider the case of the Etruscan shrew, which hunts prey including crickets almost as large as itself, and relies on its whiskers (vibrissae) to complete a kill. We model this hunting behaviour using a whiskered robot. Shrews strike rapidly and accurately after gathering very limited sensory information; we attempt to match this performance by using model-based simultaneous discrimination and localisation of a ‘prey’ robot (i.e. by using strong priors). We report performance that is comparable, given the spatial and temporal scale differences, to shrew performance in most respects

    Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties

    Get PDF
    Rare earth ion-doped CeO2 has attracted more and more attention because of its special electrical, optical, magnetic, or catalytic properties. In this paper, a facile electrochemical deposition route was reported for the direct growth of the porous Gd-doped CeO2. The formation process of Gd-doped CeO2 composites was investigated. The obtained deposits were characterized by SEM, EDS, XRD, and XPS. The porous Gd3+- doped CeO2 (10 at% Gd) displays a typical type I adsorption isotherm and yields a large specific surface area of 135 m2/g. As Gd3+ ions were doped into CeO2 lattice, the absorption spectrum of Gd3+-doped CeO2 nanocrystals exhibited a red shift compared with porous CeO2 nanocrystals and bulk CeO2, and the luminescence of Gd3+-doped CeO2 deposits was remarkably enhanced due to the presence of more oxygen vacancies. In addition, the strong magnetic properties of Gd-doped CeO2 (10 at% Gd) were observed, which may be caused by Gd3+ ions or more oxygen defects in deposits. In addition, the catalytic activity of porous Gd-doped CeO2 toward CO oxidation was studied

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    BOLD Temporal Dynamics of Rat Superior Colliculus and Lateral Geniculate Nucleus following Short Duration Visual Stimulation

    Get PDF
    Background: The superior colliculus (SC) and lateral geniculate nucleus (LGN) are important subcortical structures for vision. Much of our understanding of vision was obtained using invasive and small field of view (FOV) techniques. In this study, we use non-invasive, large FOV blood oxygenation level-dependent (BOLD) fMRI to measure the SC and LGN's response temporal dynamics following short duration (1 s) visual stimulation. Methodology/Principal Findings: Experiments are performed at 7 tesla on Sprague Dawley rats stimulated in one eye with flashing light. Gradient-echo and spin-echo sequences are used to provide complementary information. An anatomical image is acquired from one rat after injection of monocrystalline iron oxide nanoparticles (MION), a blood vessel contrast agent. BOLD responses are concentrated in the contralateral SC and LGN. The SC BOLD signal measured with gradient-echo rises to 50% of maximum amplitude (PEAK) 0.2±0.2 s before the LGN signal (p<0.05). The LGN signal returns to 50% of PEAK 1.4±1.2 s before the SC signal (p<0.05). These results indicate the SC signal rises faster than the LGN signal but settles slower. Spin-echo results support these findings. The post-MION image shows the SC and LGN lie beneath large blood vessels. This subcortical vasculature is similar to that in the cortex, which also lies beneath large vessels. The LGN lies closer to the large vessels than much of the SC. Conclusions/Significance: The differences in response timing between SC and LGN are very similar to those between deep and shallow cortical layers following electrical stimulation, which are related to depth-dependent blood vessel dilation rates. This combined with the similarities in vasculature between subcortex and cortex suggest the SC and LGN timing differences are also related to depth-dependent dilation rates. This study shows for the first time that BOLD responses in the rat SC and LGN following short duration visual stimulation are temporally different. © 2011 Lau et al

    The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture

    Get PDF
    The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats

    Whisker Movements Reveal Spatial Attention: A Unified Computational Model of Active Sensing Control in the Rat

    Get PDF
    Spatial attention is most often investigated in the visual modality through measurement of eye movements, with primates, including humans, a widely-studied model. Its study in laboratory rodents, such as mice and rats, requires different techniques, owing to the lack of a visual fovea and the particular ethological relevance of orienting movements of the snout and the whiskers in these animals. In recent years, several reliable relationships have been observed between environmental and behavioural variables and movements of the whiskers, but the function of these responses, as well as how they integrate, remains unclear. Here, we propose a unifying abstract model of whisker movement control that has as its key variable the region of space that is the animal's current focus of attention, and demonstrate, using computer-simulated behavioral experiments, that the model is consistent with a broad range of experimental observations. A core hypothesis is that the rat explicitly decodes the location in space of whisker contacts and that this representation is used to regulate whisker drive signals. This proposition stands in contrast to earlier proposals that the modulation of whisker movement during exploration is mediated primarily by reflex loops. We go on to argue that the superior colliculus is a candidate neural substrate for the siting of a head-centred map guiding whisker movement, in analogy to current models of visual attention. The proposed model has the potential to offer a more complete understanding of whisker control as well as to highlight the potential of the rodent and its whiskers as a tool for the study of mammalian attention

    Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    Get PDF
    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Symptomatic accessory navicular bone: A case series

    No full text
    Introduction: Accessory navicular bone (ANB) is present in 4–20% of the general population. It can cause of midfoot pain and consequently may lead to flat foot. The patient usually presents with pain and swelling on the medial aspect of the foot with difficulty on walking. Diagnosis is often delayed. Case reports: We report the clinical presentation and outcome of five cases from Pakistan with symptomatic ANB comprised of four males and one female (23–45 years) that were diagnosed after a significant delay. The mean duration of symptoms was one year before final diagnosis. Three cases involved the left foot while 2 were on the right side. Flat foot (pes planus) was present in one case while 2 others had a depressed medial longitudinal arch. Overuse activities including prolonged standing and excessive walking typically precipitated onset of symptoms while the female case was also overweight. Diagnosis was clinically suspected and confirmed by radiological investigations. Three patients were diagnosed with type II ANB and two with type III. Conservative management included RICE (Rest, Ice, Compression and Elevation), non-steroidal anti-inflammatory drugs (NSAIDs), foot orthotics, activity modification, patient education, and foot care. One of the patients further used a POP boot. All cases had a good recovery and were pain free at six months follow up. Conclusions: Conservative treatment is sufficient for most patients while surgical treatment is usually reserved for those with chronic persistent pain and complications. Early diagnosis and management can halt the progression of ANB to chronic pain and foot deformities
    • …
    corecore