7 research outputs found

    Hypertrophic cardiomyopathy-linked variants of cardiac myosin binding protein C3 display altered molecular properties and actin interaction

    Get PDF
    The most common inherited cardiac disorder, hypertrophic cardiomyopathy (HCM), is characterized by thickening of heart muscle, for which genetic mutations in cardiac myosin-binding protein C3 (c-MYBPC3) gene, is the leading cause. Notably, patients with HCM display a heterogeneous clinical presentation, onset and prognosis. Thus, delineating the molecular mechanisms that explain how disparate c-MYBPC3 variants lead to HCM is essential for correlating the impact of specific genotypes on clinical severity. Herein, five c-MYBPC3 missense variants clinically associated with HCM were investigated; namely V1 (R177H), V2 (A216T), V3 (E258K), V4 (E441K) and double mutation V5 (V3 + V4), all located within the C1 and C2 domains of MyBP-C, a region known to interact with sarcomeric protein, actin. Injection of the variant complementary RNAs in zebrafish embryos was observed to recapitulate phenotypic aspects of HCM in patients. Interestingly, V3- and V5-cRNA injection produced the most severe zebrafish cardiac phenotype, exhibiting increased diastolic/systolic myocardial thickness and significantly reduced heart rate compared with control zebrafish. Molecular analysis of recombinant C0–C2 protein fragments revealed that c-MYBPC3 variants alter the C0–C2 domain secondary structure, thermodynamic stability and importantly, result in a reduced binding affinity to cardiac actin. V5 (double mutant), displayed the greatest protein instability with concomitant loss of actin-binding function. Our study provides specific mechanistic insight into how c-MYBPC3 pathogenic variants alter both functional and structural characteristics of C0–C2 domains leading to impaired actin interaction and reduced contractility, which may provide a basis for elucidating the disease mechanism in HCM patients with c-MYBPC3 mutations

    Validation of a Novel Fluorescent Lateral Flow Assay for Rapid Qualitative and Quantitative Assessment of Total Anti-SARS-CoV-2 S-RBD Binding Antibody Units (BAU) from Plasma or Fingerstick Whole-Blood of COVID-19 Vaccinees

    Get PDF
    Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.This work was made possible by grant number UREP28-173-3-057 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors

    Adipose tissue dysfunction in cancer cachexia

    No full text
    Cancer cachexia is a complex disorder that is driven by inflammation and metabolic imbalances, resulting in extreme weight loss. Adipose tissue, a main player in cancer cachexia, is an essential metabolic and secretory organ consisting of both white adipose tissue (WAT) and brown adipose tissue. Its secretory products, including adipokines and cytokines, affect a wide variety of central and peripheral organs, such as the skeletal muscle, brain, pancreas, and liver. Therefore, a combination of metabolic alterations, and systemic inflammation dysregulation of both anti-inflammatory and proinflammatory modulators contribute toward adipose tissue wasting in cancer cachexia. Growing evidence suggests that, during cancer cachexia, WAT undergoes a browning process, resulting in increased lipid mobilization and energy expenditure. In this review, we have summarized the characteristics of cancer cachexia and WAT browning. Furthermore, this review describes how adipose tissue becomes inflamed in cancer, shedding light on the combinatorial action of multiple secreted macromolecules, cytokines, hormones, and tumor mediators on adipose tissue dysfunction. We also highlight the inflammatory responses, energy utilization defects, and molecular mechanisms underlying the WAT dysfunction and browning in cancer cachexia. Further, the actual mechanisms behind the loss of adipose tissue are unknown, but have been attributed to increased adipocyte lipolysis, systemic inflammation, and apoptosis or reduced lipogenesis. The understanding of adipose tissue dysfunction in cancer cachexia will hopefully promote the development of new therapeutic approaches to prevent or treat this wasting syndrome.Qatar University funding the project: GCC Co-Fund Program Grant: GCC-2017-001

    Functional Characterization of the MYO6 Variant p.E60Q in Non-Syndromic Hearing Loss Patients

    No full text
    Hereditary hearing loss (HHL) is a common genetic disorder accounting for at least 60% of pre-lingual deafness in children, of which 70% is inherited in an autosomal recessive pattern. The long tradition of consanguinity among the Qatari population has increased the prevalence of HHL, which negatively impacts the quality of life. Here, we functionally validated the pathogenicity of the c.178G&gt;C, p.E60Q mutation in the MYO6 gene, which was detected previously in a Qatari HHL family, using cellular and animal models. In vitro analysis was conducted in HeLa cells transiently transfected with plasmids carrying MYO6WT or MYO6p.E60Q, and a zebrafish model was generated to characterize the in vivo phenotype. Cells transfected with MYO6WT showed higher expression of MYO6 in the plasma membrane and increased ATPase activity. Modeling the human MYO6 variants in zebrafish resulted in severe otic defects. At 72 h post-injection, MYO6p.E60Q embryos demonstrated alterations in the sizes of the saccule and utricle. Additionally, zebrafish with MYO6p.E60Q displayed super-coiled and bent hair bundles in otic hair cells when compared to control and MYO6WT embryos. In conclusion, our cellular and animal models add support to the in silico prediction that the p.E60Q missense variant is pathogenic and damaging to the protein. Since the c.178G&gt;C MYO6 variant has a 0.5% allele frequency in the Qatari population, about 400 times higher than in other populations, it could contribute to explaining the high prevalence of hearing impairment in Qatar

    Association of periodontal therapy, with inflammatory biomarkers and complications in COVID-19 patients: a case control study

    No full text
    Background: In previous studies, COVID-19 complications were reported to be associated with periodontitis. Accordingly, this study was designed to test the hypothesis that a history of periodontal therapy could be associated with lower risk of COVID-19 complications. Methods: A case–control study was performed using the medical health records of COVID-19 patients in the State of Qatar between March 2020 and February 2021 and dental records between January 2017 and December 2021. Cases were defined as COVID-19 patients who suffered complications (death, ICU admissions and/or mechanical ventilation); controls were COVID-19 patients who recovered without major complications. Associations between a history of periodontal therapy and COVID-19 complications were analysed using logistic regression models adjusted for demographic and medical factors. Blood parameters were compared using Kruskal–Wallis test. Results: In total, 1,325 patients were included. Adjusted odds ratio (AOR) analysis revealed that non-treated periodontitis was associated with significant risk of need for mechanical ventilation (AOR = 3.91, 95% CI 1.21–12.57, p = 0.022) compared to periodontally healthy patients, while treated periodontitis was not (AOR = 1.28, 95% CI 0.25–6.58, p = 0.768). Blood analyses revealed that periodontitis patients with a history of periodontal therapy had significantly lower levels of D-dimer and Ferritin than non-treated periodontitis patients. Conclusion: Among COVID-19 patients with periodontal bone loss, only those that have not received periodontal therapy had higher risk of need for assisted ventilation. COVID-19 patients with a history of periodontal therapy were associated with significantly lower D-dimer levels than those without recent records of periodontal therapy. Clinical relevance: The fact that patients with treated periodontitis were less likely to suffer COVID-19 complications than non-treated ones further strengthen the hypothesis linking periodontitis to COVID-19 complications and suggests that managing periodontitis could help reduce the risk for COVID-19 complications, although future research is needed to verify this.Open Access funding provided by the Qatar National Library. The authors acknowledge financial support from Qatar National Research Fund (QNRF) Rapid Response Cycle 2 Grant (RRC02-0810–210032)

    Association of periodontal therapy, with inflammatory biomarkers and complications in COVID-19 patients: a case control study

    No full text
    Background In previous studies, COVID-19 complications were reported to be associated with periodontitis. Accordingly, this study was designed to test the hypothesis that a history of periodontal therapy could be associated with lower risk of COVID-19 complications. Methods A case–control study was performed using the medical health records of COVID-19 patients in the State of Qatar between March 2020 and February 2021 and dental records between January 2017 and December 2021. Cases were defined as COVID-19 patients who suffered complications (death, ICU admissions and/or mechanical ventilation); controls were COVID-19 patients who recovered without major complications. Associations between a history of periodontal therapy and COVID-19 complications were analysed using logistic regression models adjusted for demographic and medical factors. Blood parameters were compared using Kruskal–Wallis test. Results In total, 1,325 patients were included. Adjusted odds ratio (AOR) analysis revealed that non-treated periodontitis was associated with significant risk of need for mechanical ventilation (AOR = 3.91, 95% CI 1.21–12.57, p = 0.022) compared to periodontally healthy patients, while treated periodontitis was not (AOR = 1.28, 95% CI 0.25–6.58, p = 0.768). Blood analyses revealed that periodontitis patients with a history of periodontal therapy had significantly lower levels of D-dimer and Ferritin than non-treated periodontitis patients. Conclusion Among COVID-19 patients with periodontal bone loss, only those that have not received periodontal therapy had higher risk of need for assisted ventilation. COVID-19 patients with a history of periodontal therapy were associated with significantly lower D-dimer levels than those without recent records of periodontal therapy. Clinical relevance The fact that patients with treated periodontitis were less likely to suffer COVID-19 complications than non-treated ones further strengthen the hypothesis linking periodontitis to COVID-19 complications and suggests that managing periodontitis could help reduce the risk for COVID-19 complications, although future research is needed to verify this. Other Information Published in: Clinical Oral Investigations License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1007/s00784-022-04631-6</p
    corecore