8 research outputs found

    End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effects of Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction

    Full text link
    We present a multi-stage 3D computer-aided detection and diagnosis (CAD) model for automated localization of clinically significant prostate cancer (csPCa) in bi-parametric MR imaging (bpMRI). Deep attention mechanisms drive its detection network, targeting salient structures and highly discriminative feature dimensions across multiple resolutions. Its goal is to accurately identify csPCa lesions from indolent cancer and the wide range of benign pathology that can afflict the prostate gland. Simultaneously, a decoupled residual classifier is used to achieve consistent false positive reduction, without sacrificing high sensitivity or computational efficiency. In order to guide model generalization with domain-specific clinical knowledge, a probabilistic anatomical prior is used to encode the spatial prevalence and zonal distinction of csPCa. Using a large dataset of 1950 prostate bpMRI paired with radiologically-estimated annotations, we hypothesize that such CNN-based models can be trained to detect biopsy-confirmed malignancies in an independent cohort. For 486 institutional testing scans, the 3D CAD system achieves 83.69±\pm5.22% and 93.19±\pm2.96% detection sensitivity at 0.50 and 1.46 false positive(s) per patient, respectively, with 0.882±\pm0.030 AUROC in patient-based diagnosis −-significantly outperforming four state-of-the-art baseline architectures (U-SEResNet, UNet++, nnU-Net, Attention U-Net) from recent literature. For 296 external biopsy-confirmed testing scans, the ensembled CAD system shares moderate agreement with a consensus of expert radiologists (76.69%; kappakappa == 0.51±\pm0.04) and independent pathologists (81.08%; kappakappa == 0.56±\pm0.06); demonstrating strong generalization to histologically-confirmed csPCa diagnosis.Comment: Accepted to MedIA: Medical Image Analysis. This manuscript incorporates and expands upon our 2020 Medical Imaging Meets NeurIPS Workshop paper (arXiv:2011.00263

    Annotation-efficient cancer detection with report-guided lesion annotation for deep learning-based prostate cancer detection in bpMRI

    Full text link
    Deep learning-based diagnostic performance increases with more annotated data, but large-scale manual annotations are expensive and labour-intensive. Experts evaluate diagnostic images during clinical routine, and write their findings in reports. Leveraging unlabelled exams paired with clinical reports could overcome the manual labelling bottleneck. We hypothesise that detection models can be trained semi-supervised with automatic annotations generated using model predictions, guided by sparse information from clinical reports. To demonstrate efficacy, we train clinically significant prostate cancer (csPCa) segmentation models, where automatic annotations are guided by the number of clinically significant findings in the radiology reports. We included 7,756 prostate MRI examinations, of which 3,050 were manually annotated. We evaluated prostate cancer detection performance on 300 exams from an external centre with histopathology-confirmed ground truth. Semi-supervised training improved patient-based diagnostic area under the receiver operating characteristic curve from 87.2±0.8%87.2 \pm 0.8\% to 89.4±1.0%89.4 \pm 1.0\% (P<10−4P<10^{-4}) and improved lesion-based sensitivity at one false positive per case from 76.4±3.8%76.4 \pm 3.8\% to 83.6±2.3%83.6 \pm 2.3\% (P<10−4P<10^{-4}). Semi-supervised training was 14×\times more annotation-efficient for case-based performance and 6×\times more annotation-efficient for lesion-based performance. This improved performance demonstrates the feasibility of our training procedure. Source code is publicly available at github.com/DIAGNijmegen/Report-Guided-Annotation. Best csPCa detection algorithm is available at grand-challenge.org/algorithms/bpmri-cspca-detection-report-guided-annotations/

    Common Limitations of Image Processing Metrics:A Picture Story

    Get PDF
    While the importance of automatic image analysis is continuously increasing, recent meta-research revealed major flaws with respect to algorithm validation. Performance metrics are particularly key for meaningful, objective, and transparent performance assessment and validation of the used automatic algorithms, but relatively little attention has been given to the practical pitfalls when using specific metrics for a given image analysis task. These are typically related to (1) the disregard of inherent metric properties, such as the behaviour in the presence of class imbalance or small target structures, (2) the disregard of inherent data set properties, such as the non-independence of the test cases, and (3) the disregard of the actual biomedical domain interest that the metrics should reflect. This living dynamically document has the purpose to illustrate important limitations of performance metrics commonly applied in the field of image analysis. In this context, it focuses on biomedical image analysis problems that can be phrased as image-level classification, semantic segmentation, instance segmentation, or object detection task. The current version is based on a Delphi process on metrics conducted by an international consortium of image analysis experts from more than 60 institutions worldwide.Comment: This is a dynamic paper on limitations of commonly used metrics. The current version discusses metrics for image-level classification, semantic segmentation, object detection and instance segmentation. For missing use cases, comments or questions, please contact [email protected] or [email protected]. Substantial contributions to this document will be acknowledged with a co-authorshi

    Uncertainty-Aware Semi-Supervised Learning for Prostate MRI Zonal Segmentation

    Full text link
    Quality of deep convolutional neural network predictions strongly depends on the size of the training dataset and the quality of the annotations. Creating annotations, especially for 3D medical image segmentation, is time-consuming and requires expert knowledge. We propose a novel semi-supervised learning (SSL) approach that requires only a relatively small number of annotations while being able to use the remaining unlabeled data to improve model performance. Our method uses a pseudo-labeling technique that employs recent deep learning uncertainty estimation models. By using the estimated uncertainty, we were able to rank pseudo-labels and automatically select the best pseudo-annotations generated by the supervised model. We applied this to prostate zonal segmentation in T2-weighted MRI scans. Our proposed model outperformed the semi-supervised model in experiments with the ProstateX dataset and an external test set, by leveraging only a subset of unlabeled data rather than the full collection of 4953 cases, our proposed model demonstrated improved performance. The segmentation dice similarity coefficient in the transition zone and peripheral zone increased from 0.835 and 0.727 to 0.852 and 0.751, respectively, for fully supervised model and the uncertainty-aware semi-supervised learning model (USSL). Our USSL model demonstrates the potential to allow deep learning models to be trained on large datasets without requiring full annotation. Our code is available at https://github.com/DIAGNijmegen/prostateMR-USSL.Comment: 9 page

    Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges

    No full text
    Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor prostate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions delineation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., follow-up, prognosis, interventions, and focal treatment)

    Artificial intelligence for prostate MRI: open datasets, available applications, and grand challenges

    No full text
    Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor prostate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions delineation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., follow-up, prognosis, interventions, and focal treatment)

    Combining public datasets for automated tooth assessment in panoramic radiographs

    Get PDF
    Objective: Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously. Materials and methods: Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves and F1 and AUC metrics. Results: The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model’s performance correlated positively with the quality of annotations in the used public datasets. Selected samples from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which negatively influenced the performance of the AI model. Conclusions: The use and pooling of public datasets in dental AI research can significantly accelerate the development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is essential before using the datasets to ensure reliable outcomes and limit potential biases.</p

    The PI-CAI Challenge: Public Training and Development Dataset

    No full text
    This dataset represents the PI-CAI: Public Training and Development Dataset. It contains 1500 anonymized prostate biparametric MRI scans from 1476 patients, acquired between 2012-2021, at three centers (Radboud University Medical Center, University Medical Center Groningen, Ziekenhuis Groep Twente) based in The Netherlands. The PI-CAI challenge is an all-new grand challenge that aims to validate the diagnostic performance of artificial intelligence and radiologists at clinically significant prostate cancer (csPCa) detection/diagnosis in MRI, with histopathology and follow-up (≥ 3 years) as the reference standard, in a retrospective setting. The study hypothesizes that state-of-the-art AI algorithms, trained using thousands of patient exams, are non-inferior to radiologists reading bpMRI. Key aspects of the PI-CAI study design have been established in conjunction with an international scientific advisory board of 16 experts in prostate AI, radiology and urology —to unify and standardize present-day guidelines, and to ensure meaningful validation of prostate AI towards clinical translation (Reinke et al., 2021)
    corecore