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Abstract
Objective  Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and 
are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the 
diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the 
advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel 
task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously.

Materials and methods  Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX 
challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The 
first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around 
each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, 
impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was 
evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) 
metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves 
and F1 and AUC metrics.

Results  The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and 
a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, 
AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, 
AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model’s 
performance correlated positively with the quality of annotations in the used public datasets. Selected samples 
from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which 
negatively influenced the performance of the AI model.

Conclusions  The use and pooling of public datasets in dental AI research can significantly accelerate the 
development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is 
essential before using the datasets to ensure reliable outcomes and limit potential biases.
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Introduction
Panoramic radiographs (PRs) provide a two-dimen-
sional (2D) radiographic view of the upper and lower 
jaw, including the teeth and adjacent osseous struc-
tures. PRs are commonly used in dentistry and oral 
and maxillofacial surgery for diagnostic purposes due 
to their easy acquisition, limited radiation exposure, 
and comprehensive field of view. Although frequently 
used for assessing tooth impaction and identifying 
cysts, tumors, and other bony or osteolytic patholo-
gies, the diagnostic accuracy of PRs is limited by 
interobserver variability and the 2D representation of 
complex 3D maxillofacial structures [1–3].

Pathologies of odontogenic origin, such as caries, 
periapical lesions, and impacted teeth, are routinely 
diagnosed through clinical and radiographic assess-
ment [4]. A bitewing or a periapical radiograph can 
be acquired to obtain a high-resolution view centered 
on the crowns and/or roots of teeth. However, these 
radiographs have a limited field of view and can be 
challenging to obtain for certain patients (e.g. small 
mouth, gag reflex), so that acquiring a PR is envisaged 
in such cases. While conventional PRs demonstrated 
limited efficacy in the diagnosis of caries and associ-
ated pathologies [5], a potential improvement in their 
diagnostic accuracy through artificial intelligence (AI) 
has been suggested [6]. Previous studies have reported 
on applying convolutional neural networks (CNNs) for 
the automated segmentation and labeling of dentition 
on PRs [7–9]. Using transfer learning and transformer-
based models, other studies achieved further improve-
ment in the accuracy of these tasks, including the 
detection and segmentation of teeth and associated 
numbering [10, 11].

Few studies have performed concurrent tooth detec-
tion and classification of caries or periapical lesions on 
PRs [12–14]. Lower resolution in PRs has been iden-
tified as an explanation for their underperformance 
compared to bitewings and periapical radiographs 
[15]. Nevertheless, a recently proposed AI method has 
shown diagnostic capabilities comparable to dentists 
with 3 to 10 years of experience in diagnosing tooth 
pathologies while significantly reducing assessment 
time [6]. These algorithms show considerable potential 
in improving the detection rates of various pathologies 
while reducing the work-load associated with radio-
graphic examination [16].

To accelerate the development and benchmarking of 
AI techniques, several studies have made their PRs and 
corresponding annotations publicly available in data 
depositories [13, 17–21]. These public datasets vary 
in size, from 115 to 4,000 unique PRs, with the anno-
tations ranging from mandible segmentations to the 
segmentation and labeling of teeth and abnormalities. 

Despite the availability of these datasets, the adoption 
of these datasets in dental AI research still needs to 
be improved. Most studies rely on an in-house data-
set, which requires a considerable time investment for 
annotation. The use of in-house datasets also makes 
comparisons between studies more difficult, as the 
annotation guideline to construct each dataset may dif-
fer and the local population may be overrepresented.

Therefore, the current study combined two public 
datasets (OdontoAI [19], DENTEX [21]) to develop 
an automated method for the novel task of concur-
rent tooth segmentation, FDI labeling, and diagnosis 
classification, including caries, impacted tooth, and 
periapical lesions. This study aimed to evaluate the 
advantages and challenges of using publicly available 
datasets in dental AI research, focusing on improving 
the diagnostic accuracy of caries, impacted teeth, and 
periapical lesions in PRs.

Methods
This study was conducted following the code of ethics 
of the World Medical Association (Declaration of Hel-
sinki) and the checklist of artificial intelligence (AI) in 
dental research has been consulted for reporting [22]. 
No informed consent was required as all image data 
were publicly available and were anonymized.

Data
A dataset with tooth segmentations (OdontoAI) was 
pooled with another dataset comprising tooth bounding 
boxes and associated diagnoses (DENTEX) to develop a 
two-stage AI method to segment, label, and classify teeth 
and odontogenic pathologies, such as caries, impacted 
teeth, and periapical lesions in PRs.

OdontoAI: The OdontoAI platform provides a 
public dataset with 4,000 PRs, of which 2,000 are 
annotated [19]. The annotations include tooth seg-
mentations with corresponding FDI numbers. The FDI 
notation describes the location of a tooth by the quad-
rant in which the tooth resides (1–4) and the numeri-
cal order of individual teeth within the quadrant from 
midline to the back (1–8). PRs were excluded based 
on the following exclusion criteria: the presence of an 
artefact (n = 1), incorrect or missing tooth segmenta-
tion (n = 85), edentulous jaws (n = 15) or the presence 
of a mixed dentition (n = 238). The remaining 1,661 
PRs were split into 1,337 PRs for training and valida-
tion and 324 PRs for testing using multi-label stratifi-
cation based on the FDI numbers [23].

DENTEX: The Dental Enumeration and Diagnosis 
on Panoramic X-rays (DENTEX) challenge provides a 
public dataset with 705 unique PRs with tooth diagno-
sis annotations [21, 24]. More specifically, each diag-
nosed tooth is annotated within a bounding box and 
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labeled as impacted, early caries, deep caries, and/
or periapical lesion. Additionally, a subset of 260 PRs 
includes bounding boxes for teeth without a diagnosis 
(without pathology). PRs were excluded based on the 
following exclusion criteria: the presence of an arti-
fact (n = 8), incorrect or missing tooth annotations 
(n = 12), or the presence of a mixed dentition (n = 3). 
The remaining 682 PRs were split into 548 PRs for 
training and validation and 134 PRs for testing using 
multi-label stratification based on the FDI numbers 
and tooth diagnoses [23].

Deep learning method
The current method consists of two stages: tooth seg-
mentation and multi-label diagnosis classification. See 
Fig.  1 for an overview of the method. The first stage 
for tooth instance segmentation predicted tooth seg-
mentations with corresponding FDI numbers. A 
region of interest (ROI) was extracted from a PR based 
on the tooth segmentation; and the second stage for 
multi-label diagnosis classification predicted multiple 
abnormalities of the tooth. Training and inference 
was performed on a workstation with 128GB of sys-
tem memory and an RTX A6000 GPU with 48GB of 
memory.

Tooth segmentation
Mask DINO was used for tooth segmentation (Fig.  1b). 
This is a recent end-to-end deep learning pipeline for 

instance segmentation using vision transformers [25]. 
For this study, Mask DINO was implemented using the 
MMDetection framework (v3.1.0) based on PyTorch 
2.0.1 [26, 27].

The model was initialized with a ResNet-50 backbone 
[28] and was pre-trained on the COCO dataset [29]. The 
pre-trained model was fine-tuned for a maximum of 50 
epochs using the AdamW optimizer with a weight decay 
of 0.05 [30]. The initial learning rate was 10−4  and subse-
quently adjusted, divided by 10 after epochs 44 and 48. 
Data augmentation included flipping, resizing, and copy-
and-pasting of a tooth on top of the contralateral tooth 
with the same tooth number [31]. PRs were processed in 
mini-batches of two. A multi-task loss function was used 
to supervise the predicted bounding boxes, segmenta-
tions, and labels.

For inference, test-time augmentation was applied 
in the form of flipping, while non-maximum suppres-
sion was used to select the final tooth predictions with 
a set threshold of 0.1 [32]. The minimum bounding box 
around a tooth segmentation was used as the bounding 
box for this tooth.

Tooth ROI extraction
The fine-tuned Mask DINO model was used to predict 
all teeth in the PRs from the DENTEX challenge. These 
tooth predictions were used as inputs for the subsequent 
diagnosis classification stage.

Fig. 1  Overview of methodology. The teeth in the input PR (a) are segmented by Mask DINO and their FDI numbers are predicted(b) [25]. For each pre-
dicted tooth, a cropped image is made with the segmentation as extra channel (c, ROI extraction). This image is processed by four binary classifiers, one 
for each diagnosis, whose predictions are aggregated using an MLP [34], and by a multi-label classifier who returns multiple predictions via its CSRA heads 
[40]. All multi-label predictions are summed and these final scores are used to add diagnoses to the tooth segmentations (d). Non-diagnosed teeth are 
predicted, but not shown in the result for clarity. The label is the tooth’s FDI number with C = early caries, D = deep caries, P = periapical lesion, I = impacted
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A predicted tooth bounding box was matched with the 
reference tooth bounding box with a maximum intersec-
tion over union (IoU) of at least 0.25. The diagnosis labels 
of a predicted tooth were assigned based on the diagno-
sis labels of the matched reference tooth. Predicted teeth 
that were not matched were excluded, which resulted 
in 5,887 non-diagnosed teeth, 593 impacted teeth and 
2,110 teeth with early caries, 536 teeth with deep caries, 
and 150 teeth with a periapical lesion. For each matched 
tooth, a classification image was generated (Fig. 1c). An 
additional color channel representing the tooth’s binary 
segmentation was added to the grayscale PR. This two-
channel image was then cropped around the tooth seg-
mentation with a margin of 10%. This margin provided 
extra contextual information to the classification model, 
improving its diagnostic effectiveness.

Multi-label diagnosis classification
The classification stage was implemented using MMPre-
Train (v1.0.1) based on PyTorch 2.0.1 [27, 33]. Classifica-
tion images extracted for each tooth in the PRs from the 
DENTEX challenge were used for training and evalua-
tion (Fig. 1c).

Pre-training  A Swin-B backbone [34] was first pre-
trained on the ImageNet dataset [35] using the SimMIM 
method [36]. SimMIM is a self-supervised pre-training 
technique that removes parts of the input image and 
predicts the missing pixels. This allows it to effectively 
model the relationships between foreground objects 
and their context objects. After pre-training on Ima-
geNet for 800 epochs, the Swin-B backbone underwent 
further pre-training on the train/validation classifica-
tion images for an additional 100 epochs.

Binary classification  Four binary classifiers were 
trained to distinguish diagnosed teeth from non-
diagnosed teeth for each diagnosis. Each classifier 
comprised a Swin-B backbone followed by a fully-
connected layer. The backbone was initialized using 
the pre-trained model parameters and each classifier 
was fine-tuned for a maximum of 80 epochs using the 
AdamW optimizer with a weight decay of 0.05 [30]. 
The learning rate increased linearly to 0.0002 during 
the first 5 epochs and subsequently followed a cosine 
annealing schedule. Data augmentation included flip-
ping, resizing, spatial and intensity transformations 
[37], and copy-and-pasting a tooth to another classifi-
cation image with the same FDI number [31]. PRs were 
processed in mini-batches of 256 and the predictions 
were supervised using the cross-entropy loss func-
tion with label smoothing [38]. Class imbalance was 
addressed by sampling diagnosed and non-diagnosed 
teeth equally [39].

Multi-label classification  The four binary classifiers 
were frozen and a multi-layer perceptron (MLP) was 
used to aggregate their predictions into four diagnostic 
probabilities. A fifth pre-trained Swin-B backbone was 
used to learn visual features for multi-label classifica-
tion. The final feature maps of the Swin-B backbone 
were further processed by the class-specific residual 
attention (CSRA) module [40]. This module employed 
multi-head self-attention to focus on multiple locations 
of the input image simultaneously. Each head of the 
CSRA module predicted four diagnostic probabilities. 
The predictions from the binary classifiers and the pre-
dictions from the CSRA module are aggregated by ele-
ment-wise summing. The same training setup was used 
as in the binary classification stage, with the exception 
that class imbalance was addressed by more frequent 
sampling of classification images with rare diagnoses 
[41]. Furthermore, the focal loss function was used [42].

Inference  During the inference stage, test-time aug-
mentation was applied with flipping, and the predic-
tions were aggregated by averaging the diagnostic 
probabilities. The probabilities were updated to incor-
porate prior knowledge. More specifically, each diag-
nostic probability was multiplied by the score of the 
tooth segmentation. Mutual exclusions were down-
scaled between early caries and deep caries, as well 
as between impacted teeth and other diagnoses, and 
between impacted teeth and teeth other than third 
molars. Finally, the predicted diagnoses of the extracted 
ROI were projected back to the same tooth of the input 
PR (Fig. 1d).

Evaluation and comparison
Five-fold cross-validation splits were determined for 
the train/validation PRs from OdontoAI and DEN-
TEX datasets using multi-label stratification [23]. 
Both stages are trained five times given a different 
cross-validation split to investigate the variability of 
the method’s results. Both the tooth segmentation and 
diagnosis classification stages were trained five times 
with different cross- validation splits to investigate the 
variability of the method’s results.

The performance of the tooth segmentation stage 
was evaluated using a free-response receiver-operat-
ing-characteristics (FROC) analysis and mean aver-
age precision (mAP) metrics. These analyses and 
metrics were calculated as the mean performance 
on the test split that was held out for each round of 
cross-validation.

The diagnosis classification stage was evaluated 
based on a ROC analysis for each type of diagno-
sis. Additional metrics such as accuracy, F1-score, 
and AUC were also computed and reported. To gain 
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insights into the model’s limitations, failure cases were 
shown and analyzed to assess the method’s errors.

Statistical analysis
The model predictions on the test splits were compared 
to the reference annotations using scikit-learn (v1.3.0). 
Classification metrics were reported as follows: accuracy 
= TP+TN

TP+TN+FP+FN  and F1-score = 2TP
2TP+FP+FN , where TP, 

TN, FP, and FN denote true positives, true negatives, false 
positives, and false negatives, respectively. Furthermore, 
the area under the receiver-operating-characteristics 
curve (AUC) and the confusion matrix were presented.

Results
The current method demonstrated high performance in 
automated tooth segmentation and labeling with a mean 
FROC score of 0.988 and a mAP of 0.848 (Fig. 2; Table 1).

When the FDI numbers were excluded from consid-
eration, the performance increased further, with a mean 
FROC score of 0.998 and a mAP of 0.849. Upon visual 
examination, the tooth segmentations were accurate, 
even in cases of overlapping teeth (Fig.  1). Errors that 
were present could be attributed to poor image qual-
ity or uncommon dental anomalies, such as horizontally 
impacted canines or the presence of a syndromic disease 
(Fig. 3).

The current method also achieved moderate to high 
accuracies in classifying dental pathology (Fig.  4). The 
method was most effective in classifying impacted teeth 
(AUC = 0.996), followed by teeth with a periapical lesion 
(AUC = 0.974) and/or a deep caries lesion (AUC = 0.960), 
and the model was least effective in detection of teeth 
with an early caries lesion (AUC = 0.881).

Table 1  Tooth instance segmentation metrics.The results on 
the held-out test split of PRs from the OdontoAI platform are 
averaged for five models trained with 5-fold cross-validation. 
mAP@IoU=x  denotes mean average precision at intersection 
over union threshold(s) x
mAP@IoU = 0.5 0.75 0.5:0.95
Class-agnostic 0.990 0.989 0.849
FDI 0.993 0.985 0.848

Fig. 2  Free-response receiver operating characteristic (FROC) curves of tooth instance segmentation on PRs. Results are based on 324 held-out test PRs 
from the OdontoAI platform. The score is computed as the mean sensitivity at false-positive rates of 0.25, 0.5, 1, 2, 4, and 8 following [48]
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The present two-stage AI model had difficulties in 
distinguishing between teeth with early caries and non-
diagnosed teeth, as shown in Fig.  5. In cases where the 
reference or the predictions indicated a diagnosis (exclud-
ing the true negatives, see Table 2), classifying impacted 
teeth yielded the highest effectiveness (F1 = 0.901), fol-
lowed by deep caries (F1 = 0.683), early caries (F1 = 0.662), 
and periapical lesions (F1 = 0.603).

Discussion
This study aimed to explore the advantages and chal-
lenges of employing publicly available research data for 
AI-based dental research. Based on two public datas-
ets, OdontoAI and DENTEX, a two-stage AI model was 
developed for automated tooth segmentation and diag-
nosis classification in PRs, to detect impacted teeth as 
well as teeth with (deep) caries and/or periapical lesions. 
Using the Mask DINO model (vision transformer), seg-
mentation and labeling of teeth was accurate, obtain-
ing a mAP of 0.848. The AI model demonstrated high 
effectiveness in the multi-label diagnosis classification of 
impacted teeth (F1-score = 0.901; AUC = 0.996). However, 
it showed limitations in detecting teeth with early caries 
(F1-score = 0.662; AUC = 0.881).

The present study highlighted the potential benefits of 
utilizing public research datasets to develop AI-based 
approaches to perform specific tasks, to aid clinicians 
in daily practice. By combining two distinct datasets, 
data collection and data annotation time could be con-
siderably reduced, yet time was required for adequate 
data selection. Furthermore, the two-stage AI model was 

trained to use reference annotations from each dataset 
effectively. This demonstrated that using and combining 
public research datasets is a viable way to develop inno-
vative dental AI solutions.

Many studies have been performed investigating 
tooth segmentation in PRs [43]. A recent study anno-
tated 6,046 PRs and developed a two-stage model 
that first segmented and cropped around a region of 
interest, whereafter tooth segmentations were pre-
dicted and labeled with FDI numbers [44]. The authors 
reported an mAP of 0.966 at an intersection over union 
(IoU) threshold of 0.75 on the validation set, which 
was less effective compared to our method. Another 
study used a dataset comprising 1,500 PRs and incor-
porated individual models for tooth segmentation and 
tooth labeling using collaborative learning [7]. The 
results showed an mAP of 0.973 at an IoU threshold of 
0.5, which was less effective compared to our model. 
The high effectiveness of the current method could be 
partly explained by the curation of the dataset from 
the OdontoAI platform; dental implants and bridges 
were not annotated and were not included for model 
evaluation [19].

One study investigated the efficacy of automatic soft-
ware for classifying dental conditions such as restora-
tions, caries, and periapical lesions [45]. This software 
achieved F1-scores of 0.593 and 0.479 for classifying 
teeth with caries and periapical lesions, respectively. In 
contrast, the present study achieved higher F1-scores 
of 0.662 and 0.603 for these conditions. Another study 
used a two-stage approach similar to the present 

Fig. 3  Tooth segmentation failure cases. Two PRs from the DENTEX challenge dataset are shown with predictions. A horizontally impacted canine (in red 
circle) is not segmented in the first PR and multiple teeth (e.g. in red circle) are not segmented in the second PR due to a syndromic disease. The label is 
the tooth’s FDI number
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study, using manually segmented and cropped third 
molars in PRs to determine the presence of caries 
lesions [46]. The study reported an F1-score of 0.86 
and an AUC of 0.90, showing better results compared 
to the current study. However, this AI method has 
limited utility compared to the current method, as it 
requires clinician interactions and only assesses car-
ies in third molars. The highlighted studies made use 
of datasets without public access and the source code 
of their methods was unavailable, making a thorough 
reproduction unfeasible. Direct comparisons between 
the results of the current method and the highlighted 
studies should thus be made with caution.

Several studies have focused on predicting the seg-
mentation of caries and periapical lesions on PRs. 
CariesNet was trained on 1159 PRs to predict a seg-
mentation of shallow, moderate, and deep caries 
lesions and achieved a Dice similarity coefficient 
(DSC) of 0.935 [12]. A second study used a U-net 
model to segment periapical lesions in 470 PRs and 

detected the lesions with an F1-score of 0.88 at an 
IoU threshold of 0.70 [47]. These studies suggest that 
a direct segmentation of caries and periapical lesions 
provides a more precise reference annotation that can 
be used to develop more effective AI methods. How-
ever, acquiring reference segmentations is considerably 
more laborious, time-consuming, and resource-inten-
sive than identifying or labeling tooth diagnoses. 
Achieving a consensus among dental experts on the 
exact boundaries and nature of the segmented lesions 
poses an additional challenge. This makes it more dif-
ficult to establish a unanimous reference for training 
AI models.

A limitation of this study is the inconsistency of the 
dataset with tooth diagnosis annotations, as shown in 
Figs. 6 and 7. As the tooth bounding box can be notably 
larger than the assessed tooth, some reference teeth with 
diagnoses could not be matched to a predicted tooth dur-
ing the construction of classification images (subsubsec-
tion 3.2.2).

Fig. 4  Receiver operating characteristic (ROC) curves illustrating the multi-label classification results of tooth diagnoses on PRs. A varying effectiveness 
can be observed for different tooth diagnoses. Results are based on 134 held-out test PRs from the DENTEX challenge. AUC = area under ROC curve
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Moreover, the dataset contained missing diagnoses 
(false negatives) and misdiagnoses (false positives). As 
a result, a re-assessment of the dataset could be per-
formed based on the largest discrepancies between 
the reference annotations and the AI method’s pre-
dictions to improve the consistency of the dataset and 
the model’s effectiveness. Biases present in the dataset 
and model could only be identified and corrected with 
a diagnostic re-assessment of (a sample of ) the data-
set involving a dental expert. Another limitation is the 
long processing time of the current two-stage model 
(40  s), compared to single-stage object detectors or 
segmentation models. This could potentially hinder 
the adoption of the AI method, as a clinician expects 
immediate results upon acquiring a PR.

The current work can be extended by incorporating 
additional public research data with segmentations of 
caries and periapical lesions [13, 20]. Using the current 
method for tooth segmentation, it is possible to inte-
grate lesion segmentations to form multi-level tooth 
segmentations, with the tooth segmentation as the 
first level and the associated lesion segmentations as 
the second level. However, performing a diagnostic re-
assessment to verify and validate these datasets before 
using them for further research is recommended. 
Another direction for future work is collecting PRs 
and bitewings or periapical radiographs from the same 
patient visit. Clinicians make fewer diagnostic errors 
when detecting caries and periapical lesions on these 
higher-resolution radiographs. Subsequently, a dataset 
of PRs with more reliable annotations of tooth diag-
noses can be created by making the diagnoses on the 
associated higher-resolution radiographs.

Conclusions
This study aimed to investigate the opportunities and 
challenges of using publicly available datasets in dental 
AI research. For that purpose, two public datasets with 
panoramic radiographs were combined to develop an 
effective method for predicting tooth segmentations, 
FDI numbers, and tooth diagnoses, concurrently. 

Table 2  Multi-label tooth diagnosis classification metrics. The 
results on the held-out test split are averaged for five models 
trained with 5-fold cross-validation. See subsection 3.4 for 
elaboration on the metrics

Accuracy F1-score AUC
Early Caries 0.843 0.662 0.881
Deep Caries 0.969 0.683 0.960
Periapical Lesion 0.987 0.603 0.974
Impacted 0.988 0.901 0.996

Fig. 5  Confusion matrix illustrating the multi-label classification results of tooth diagnoses on PRs. Results on 134 held-out test PRs from the DENTEX 
challenge are shown for the most effective model. The colorbar is normalized according to the number of PRs per predicted label
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Fig. 6  DENTEX annotations with missing diagnoses. A missed diagnosis (false negative) is shown for each diagnosis, which are selected based on the 
maximum difference between a diagnosis probability and whether that diagnosis is annotated. Note that the DENTEX dataset only annotates diagnosed 
teeth, whereas the current method predicts all teeth. The label is the tooth’s FDI number with C = early caries, D = deep caries, P = periapical lesion, 
I = impacted
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Fig. 7  Misdiagnosed DENTEX annotations. A misdiagnosis (false positive) is shown for each diagnosis, which are selected based on the maximum differ-
ence between a diagnosis probability and whether that diagnosis is annotated. Note that the DENTEX dataset only annotates diagnosed teeth, whereas 
the current method predicts all teeth. The label is the tooth’s FDI number with C = early caries, D = deep caries, P = periapical lesion, I = impacted
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Using and combining public datasets for AI research 
in dentistry enables fast exploration of novel tasks 
and considerably reduces the development time of 
AI methods. However, the quality of the reference 
annotations can vary greatly depending on the data-
set. Implementing a form of data quality assurance is 
therefore recommended to optimize the performance 
of AI models while limiting the risk of biases.
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