1,231 research outputs found

    Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields

    Full text link
    We discuss the problem of magnetic-dipolar oscillations combined with microwave resonators. The energy density of magnetic-dipolar or magnetostatic (MS) oscillations in ferrite resonators is not the electromagnetic-wave density of the energy and not the exchange energy density as well. This fact reveals very special behaviors of the geometrical effects. Compared to other geometries, thin-film ferrite disk resonators exhibit very unique interactions of MS oscillations with the cavity electromagnetic fields. MS modes in a flat ferrite disk are characterized by a complete discrete spectrum of energy levels. The staircase demagnetization energy in thin-film ferrite disks may appear as noticeable resonant absorption of electromagnetic radiation. Our experiments show how the environment may cause decoherence for magnetic oscillations. Another noticeable fact is experimental evidence for eigen-electric-moment oscillations in a ferrite disk resonator

    Studies on the antidiarrhoeal, antimicrobial and cytotoxic activities of ethanol-extracted leaves of yellow oleander (Thevetia peruviana)

    Get PDF
    This study screened the antidiarrhoeal, antimicrobial and cytotoxic effects of ethanol-extracted leaves of yellow oleander (Thevetia peruviana). The extract was tested against castor oil-induced diarrhoea in a model of albino rats and showed significant antidiarrhoeal activity (P<0.01). Disc diffusion technique was used to test the in vitro antibacterial activities of the extract and exhibited poor antibacterial activities against both Gram positive and Gram negative bacteria (mainly Bacillus sp). Ethanol-extracted leaves of yellow oleander showed narrow zone of inhibition in the bacterial lawns of Shigella flexineri, Salmonella typhi, Klebsiella sp, Staphylococcus aureus and Shigella sonnei. Cytotoxicty was determined against brine shrimp nauplii and LC50 of the plant extract was determined as 627.21μg/ml. The wide range of LC50 value denotes the safety effect of the extract

    Influence of ghrelin and growth hormone deficiency on AMP-activated protein kinase and hypothalamic lipid metabolism

    Get PDF
    This is the peer reviewed version of the article which has been published in final form at Wiley Online Library. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for self-archiving[Abstract] Current evidence demonstrates that the stomach-derived hormone ghrelin, a potent growth hormone (GH) secretagogue, promotes feeding through a mechanism involving the short-term activation of hypothalamic AMP-activated protein kinase (AMPK), which in turn results in decreased hypothalamic levels of malonyl-CoA and increased carnitine palmitoyltransferase 1 (CPT1) activity. Despite this evidence, no data have been reported about the effect of chronic, central ghrelin administration on hypothalamic fatty acid metabolism. In the present study, we examined the differences in hypothalamic fatty acid metabolism in the presence and absence of GH, by using a model for the study of GH-deficiency, namely the spontaneous dwarf rat and the effect of long-term central ghrelin treatment and starvation on hypothalamic fatty acid metabolism in this animal model. Our data showed that GH-deficiency induces reductions in both de novo lipogenesis and β-oxidation pathways in the hypothalamus. Thus, dwarf rats display reductions in fatty acid synthase (FAS) mRNA expression both in the ventromedial nucleus of the hypothalamus (VMH) and whole hypothalamus, as well as in FAS protein and activity. CPT1 activity was also reduced. In addition, in the present study, we show that chronic ghrelin treatment does not promote AMPK-induced changes in the overall fluxes of hypothalamic fatty acid metabolism in normal rats and that this effect is independent of GH status. By contrast, we demonstrated that both chronic ghrelin and fasting decreased FAS mRNA expression in the VMH of normal rats but not dwarf rats, suggesting GH status dependency. Overall, these results suggest that ghrelin plays a dual time-dependent role in modulating hypothalamic lipid metabolism. Understanding the molecular mechanism underlying the interplay between GH and ghrelin on hypothalamic lipid metabolism will allow new strategies for the design and development of suitable drugs for the treatment of GH-deficiency, obesity and its comorbidities.Galicia. Consellería de Innovación, Industria e Comercio; PGIDIT06PXIB208063PRGalicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2006/66Xunta de Galicia; PS07/12Instituto de Salud Carlos III; PI061700Instituto de Salud Carlos III; PS09/01880Instituto de Salud Carlos III; PI051024Instituto de Salud Carlos III; PI070413Ministerio de Educacion y Ciencia; BFU2008Ministerio de Educacion y Ciencia; RyC-2007-00211Unión Europea; Health-F2-2008-22371

    Bulk Viscous LRS Biachi-I Universe with variable GG and decaying Λ\Lambda

    Full text link
    The present study deals with spatially homogeneous and totally anisotropic locally rotationally symmetric (LRS) Bianchi type I cosmological model with variable GG and Λ\Lambda in presence of imperfect fluid. To get the deterministic model of Universe, we assume that the expansion (θ)(\theta) in the model is proportional to shear (σ)(\sigma). This condition leads to A=ℓBnA=\ell B^{n}, where AA,\;BB are metric potential. The cosmological constant Λ\Lambda is found to be decreasing function of time and it approaches a small positive value at late time which is supported by recent Supernovae Ia (SN Ia) observations. Also it is evident that the distance modulus curve of derived model matches with observations perfectly.Comment: 11 pages, 4 figures and 1 table, Accepted for publication in Astrophysics and Space Scienc

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f≃1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f≃1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    Bianchi type II models in the presence of perfect fluid and anisotropic dark energy

    Full text link
    Spatially homogeneous but totally anisotropic and non-flat Bianchi type II cosmological model has been studied in general relativity in the presence of two minimally interacting fluids; a perfect fluid as the matter fluid and a hypothetical anisotropic fluid as the dark energy fluid. The Einstein's field equations have been solved by applying two kinematical ans\"{a}tze: we have assumed the variation law for the mean Hubble parameter that yields a constant value of deceleration parameter, and one of the components of the shear tensor has been considered proportional to the mean Hubble parameter. We have particularly dwelled on the accelerating models with non-divergent expansion anisotropy as the Universe evolves. Yielding anisotropic pressure, the fluid we consider in the context of dark energy, can produce results that can be produced in the presence of isotropic fluid in accordance with the \Lambda CDM cosmology. However, the derived model gives additional opportunities by being able to allow kinematics that cannot be produced in the presence of fluids that yield only isotropic pressure. We have obtained well behaving cases where the anisotropy of the expansion and the anisotropy of the fluid converge to finite values (include zero) in the late Universe. We have also showed that although the metric we consider is totally anisotropic, the anisotropy of the dark energy is constrained to be axially symmetric, as long as the overall energy momentum tensor possesses zero shear stress.Comment: 15 pages; 5 figures; matches the version published in The European Physical Journal Plu

    Modified gravity in a viscous and non-isotropic background

    Full text link
    We study the dynamical evolution of an f(R)f(R) model of gravity in a viscous and anisotropic background which is given by a Bianchi type-I model of the Universe. We find viable forms of f(R)f(R) gravity in which one is exactly the Einsteinian model of gravity with a cosmological constant and other two are power law f(R)f(R) models. We show that these two power law models are stable with a suitable choice of parameters. We also examine three potentials which exhibit the potential effect of f(R)f(R) models in the context of scalar tensor theory. By solving different aspects of the model and finding the physical quantities in the Jordan frame, we show that the equation of state parameter satisfy the dominant energy condition. At last we show that the two power law f(R)f(R) models behave like quintessence model at late times and also the shear coefficient viscosity tends to zero at late times.Comment: 7 pages, 2 figure

    Progress in interfacial solar steam generation using low-dimensional and biomass-derived materials

    Get PDF
    The pressing concern of escalating water scarcity has spurred the creation of advanced technologies, such as interfacial solar steam generation (ISSG), to tackle the challenge. ISSG employs solar energy for efficient water desalination and purification. This comprehensive review delves into various aspects of ISSG, primarily focusing on elucidating its mechanisms, optimizing substrate materials, implementing thermal management strategies, and exploring applications. The study dissects the intricate mechanism of ISSG, highlighting photothermal behaviors across different materials, including the significant role of nanoparticles in vapor generation. The impact of substrate composition and shape on solar evaporation efficiency is investigated, with multi-surface evaporators considered for environmental energy harnessing. To enhance performance, thermal management strategies, including innovative water transport paths for improved heat distribution, are assessed. Addressing key challenges like salt accumulation, biofouling, corrosion, and oil fouling, the review offers insights for issue mitigation. Practically, ISSG is spotlighted for its role in seawater desalination, wastewater treatment (e.g., dye and heavy metal removal), oil-water separation, and sterilization, extending its relevance across industries and healthcare. By comprehensively examining ISSG's mechanisms, substrate considerations, thermal strategies, and applications, this review advances its implementation as a transformative solution for global water challenges

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions ∑i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and ∑i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ∀ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a c−c-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc
    • …
    corecore