17 research outputs found

    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome

    Get PDF
    Background: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. Methodology/Principal Findings: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. Conclusions/Significance: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.Chelsee A. Hewitt, King-Hwa Ling, Tobias D. Merson, Ken M. Simpson, Matthew E. Ritchie, Sarah L. King, Melanie A. Pritchard, Gordon K. Smyth, Tim Thomas, Hamish S. Scott and Anne K. Vos

    Alzheimer disease models and human neuropathology: similarities and differences

    Get PDF
    Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis

    Search for gravitational waves associated with gamma-ray bursts detected by Fermi and Swift during the LIGO–Virgo run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC–2020 March 27 17:00 UTC). We conduct two independent searches: a generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate

    Chromosome 21 and down syndrome: from genomics to pathophysiology

    No full text
    The sequence of chromosome 21 was a turning point for the understanding of Down syndrome. Comparative genomics is beginning to identify the functional components of the chromosome and that in turn will set the stage for the functional characterization of the sequences. Animal models combined with genome-wide analytical methods have proved indispensable for unravelling the mysteries of gene dosage imbalance
    corecore