51 research outputs found

    Ion transport across membranes mediated by a dynamic combinatorial library

    Get PDF
    In this thesis, the proof of concept of using a Dynamic Combinatorial Library (DCL) directly for a function is presented. The transport of ions mediated by a carrier amplified from a DCL was successfully achieved. A carrier macrocycle is formed directly by a DCL and then it transports calcium ions from a water source phase to a water receiver phase passing through synthetic organic membranes

    Hooked on mushrooms:Preparation and mechanics of a bioinspired soft probabilistic fastener

    Get PDF
    Probabilistic fasteners are known to provide strong attachment onto their respective surfaces. Examples are Velcro® and the "3M dual lock"system. However, these systems typically only function using specific counter surfaces and are often destructive to other surfaces such as fabrics. Moreover, the design parameters to optimize their functionality are not obvious. Here, we present a surface patterned with soft micrometric features inspired by the mushroom shape showing a nondestructive mechanical interlocking and thus attachment to fabrics. We provide a scalable experimental approach to prepare these surfaces and quantify the attachment strength with rheometric and video-based analysis. In these "probabilistic fasteners,"we find that higher feature densities result in higher attachment force; however, the individual feature strength is higher on a low feature density surface. We interpret our results via a load-sharing principle common in fiber bundle models. Our work provides new handles for tuning the mechanical attachment properties of soft patterned surfaces that can be used in various applications including soft robotics.</p

    Systems chemistry: using thermodynamically controlled networks to assess molecular similarity

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The assessment of molecular similarity is a key step in the drug discovery process that has thus far relied almost exclusively on computational approaches. We now report an experimental method for similarity assessment based on dynamic combinatorial chemistry. Results In order to assess molecular similarity directly in solution, a dynamic molecular network was used in a two-step process. First, a clustering analysis was employed to determine the network’s innate discriminatory ability. A classification algorithm was then trained to enable the classification of unknowns. The dynamic molecular network used in this work was able to identify thin amines and ammonium ions in a set of 25 different, closely related molecules. After training, it was also able to classify unknown molecules based on the presence or absence of an ethylamine group. Conclusions This is the first step in the development of molecular networks capable of predicting bioactivity based on an assessment of molecular similarity. </jats:sec

    Highly contractile 3D tissue engineered skeletal muscles from human iPSCs reveal similarities with primary myoblast-derived tissues

    Get PDF
    Skeletal muscle research is transitioning toward 3D tissue engineered in vitro models reproducing muscle's native architecture and supporting measurement of functionality. Human induced pluripotent stem cells (hiPSCs) offer high yields of cells for differentiation. It has been difficult to differentiate high-quality, pure 3D muscle tissues from hiPSCs that show contractile properties comparable to primary myoblast-derived tissues. Here, we present a transgene-free method for the generation of purified, expandable myogenic progenitors (MPs) from hiPSCs grown under feeder-free conditions. We defined a protocol with optimal hydrogel and medium conditions that allowed production of highly contractile 3D tissue engineered skeletal muscles with forces similar to primary myoblast-derived tissues. Gene expression and proteomic analysis between hiPSC-derived and primary myoblast-derived 3D tissues revealed a similar expression profile of proteins involved in myogenic differentiation and sarcomere function. The protocol should be generally applicable for the study of personalized human skeletal muscle tissue in health and disease.</p

    Metal induced folding: Synthesis and conformational analysis of the lanthanide complexes of two 44-membered hydrazone macrocycles

    Get PDF
    Six new lanthanide complexes of two 44-membered macrocycles have been prepared and characterised in solution. An analysis of the conformations of the free macrocycles and their lanthanide complexes both in solution (2D NMR) and in solid state (X-ray crystallography) demonstrate that the complexation induces changes in folding of the macrocycles

    A 3D Printer in the lab: not only a toy

    No full text
    Although 3D printers are becoming more common in households, they are still underrepresented in many laboratories worldwide and regarded as toys rather than as laboratory equipment. This short review wants to change this conservative point of view. This mini-review focuses on Fused Deposition Modeling (FDM) printers and what happens after acquiring your first 3D printer. In short, these printers melt plastic filament and deposit it layer by layer to create the final object. They are getting cheaper and easier to use, and nowadays it is not difficult to find good 3D printers for less than 500€. At such a price, a 3D printer is one, if not the most, versatile piece of equipment you can have in a laboratory

    A 3D Printer in the Lab : Not Only a Toy

    No full text
    Although 3D printers are becoming more common in households, they are still under-represented in many laboratories worldwide and regarded as toys rather than as laboratory equipment. This short review wants to change this conservative point of view. This mini-review focuses on fused deposition modeling printers and what happens after acquiring your first 3D printer. In short, these printers melt plastic filament and deposit it layer by layer to create the final object. They are getting cheaper and easier to use, and nowadays it is not difficult to find good 3D printers for less than €500. At such a price, a 3D printer is one, if not the most, versatile piece of equipment you can have in a laboratory

    Blogroll: The human element

    No full text

    Ender3 3D Printer Kit Transformed into Open, Programmable Syringe Pump Set

    No full text
    Ender 3 syringe pumps is an open source and open hardware device for converting an Ender 3 kit to a set of 3 syringe pumps. Almost everything needed for the build is the Ender 3 kit, even all the screws and the tools needed for the assembly. The only parts which needed to be bought are three 5x5 shaft couplers and M5 lead screw
    • …
    corecore