206 research outputs found

    Pathway-Specific Polygenic Risk Scores as Predictors of Amyloid-beta Deposition and Cognitive Function in a Sample at Increased Risk for Alzheimer's Disease

    Get PDF
    Polygenic risk scores (PRSs) have been used to combine the effects of variants with small effects identified by genome-wide association studies. We explore the potential for using pathway-specific PRSs as predictors of early changes in Alzheimer’s disease (AD)-related biomarkers and cognitive function. Participants were from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of adults who were cognitively asymptomatic at enrollment and enriched for a parental history of AD. Using genes associated with AD in the International Genomics of Alzheimer’s Project’s meta-analysis, we identified clusters of genes that grouped into pathways involved in amyloid-β (Aβ) deposition and neurodegeneration: Aβ clearance, cholesterol metabolism, and immune response. Weighted pathway-specific and overall PRSs were developed and compared to APOE alone. Mixed models were used to assess whether each PRS was associated with cognition in 1,200 individuals, cerebral Aβ deposition measured using amyloid ligand (Pittsburgh compound B) positron emission imaging in 168 individuals, and cerebrospinal fluid Aβ deposition, neurodegeneration, and tau pathology in 111 individuals, with replication performed in an independent sample. We found that PRSs including APOE appeared to be driven by the inclusion of APOE, suggesting that the pathway-specific PRSs used here were not more predictive than an overall PRS or APOE alone. However, pathway-specific PRSs could prove to be useful as more knowledge is gained on the genetic variants involved in specific biological pathways of AD

    The multiple facets of the Hsp90 machine

    Get PDF
    International audienceThe Ninth International Conference on the Hsp90 Chaperone Machine concluded in October 2018, in Leysin, Switzerland. The program highlighted findings in various areas, including integrated insight into molecular mechanism of Hsp90, cochaperones, and clients’ structure and function.Heat shock protein-90 (Hsp90) is a molecular chaperone critical for the folding, stability, and activity of client proteins 1. Hsp90 and its orthologs, including bacterial HtpG, mitochondrial TRAP1 and endoplasmic reticulum Grp94, exist as dimers, hydrolyze ATP, and cycle between distinct conformational states. Hsp90 preferentially binds proteins in near native states facilitating their remodeling for protein interactions and signaling. At the 9th International Conference on the Hsp90 Chaperone Machine approximately one-third of the attendees shared their data on Hsp90 structure and function through short talks (Figure 1). Here, we distill and summarize their finding

    A bovine lymphosarcoma cell line infected with theileria annulata exhibits an irreversible reconfiguration of host cell gene expression

    Get PDF
    Theileria annulata, an intracellular parasite of bovine lymphoid cells, induces substantial phenotypic alterations to its host cell including continuous proliferation, cytoskeletal changes and resistance to apoptosis. While parasite induced modulation of host cell signal transduction pathways and NFκB activation are established, there remains considerable speculation on the complexities of the parasite directed control mechanisms that govern these radical changes to the host cell. Our objectives in this study were to provide a comprehensive analysis of the global changes to host cell gene expression with emphasis on those that result from direct intervention by the parasite. By using comparative microarray analysis of an uninfected bovine cell line and its Theileria infected counterpart, in conjunction with use of the specific parasitacidal agent, buparvaquone, we have identified a large number of host cell gene expression changes that result from parasite infection. Our results indicate that the viable parasite can irreversibly modify the transformed phenotype of a bovine cell line. Fifty percent of genes with altered expression failed to show a reversible response to parasite death, a possible contributing factor to initiation of host cell apoptosis. The genes that did show an early predicted response to loss of parasite viability highlighted a sub-group of genes that are likely to be under direct control by parasite infection. Network and pathway analysis demonstrated that this sub-group is significantly enriched for genes involved in regulation of chromatin modification and gene expression. The results provide evidence that the Theileria parasite has the regulatory capacity to generate widespread change to host cell gene expression in a complex and largely irreversible manner

    Phosphorylation and Ubiquitination Regulate Protein Phosphatase 5 Activity and Its Prosurvival Role in Kidney Cancer

    Get PDF
    The serine/threonine protein phosphatase 5 (PP5) regulates multiple cellular signaling networks. A number of cellular factors, including heat shock protein 90 (Hsp90), promote the activation of PP5. However, it is unclear whether post-translational modifications also influence PP5 phosphatase activity. Here, we show an “on/off switch” mechanism for PP5 regulation. The casein kinase 1δ (CK1δ) phosphorylates T362 in the catalytic domain of PP5, which activates and enhances phosphatase activity independent of Hsp90. Overexpression of the phosphomimetic T362E-PP5 mutant hyper-dephosphorylates substrates such as the co-chaperone Cdc37 and glucocorticoid receptor in cells. Our proteomic approach revealed that the tumor suppressor von Hippel-Lindau protein (VHL) interacts with and ubiquitinates K185/K199-PP5 for proteasomal degradation in a hypoxia- and prolyl-hydroxylation-independent manner. Finally, VHL-deficient clear cell renal cell carcinoma (ccRCC) cell lines and patient tumors exhibit elevated PP5 levels. Downregulation of PP5 causes ccRCC cells to undergo apoptosis, suggesting a prosurvival role for PP5 in kidney cancer

    Association of the coronary artery disease risk gene GUCY1A3 with ischaemic events after coronary intervention

    Get PDF
    Aim: A common genetic variant at the GUCY1A3 coronary artery disease locus has been shown to influence platelet aggregation. The risk of ischaemic events including stent thrombosis varies with the efficacy of aspirin to inhibit platelet reactivity. This study sought to investigate whether homozygous GUCY1A3 (rs7692387) risk allele carriers display higher on-aspirin platelet reactivity and risk of ischaemic events early after coronary intervention. Methods and results: The association of GUCY1A3 genotype and on-aspirin platelet reactivity was analysed in the genetics substudy of the ISAR-ASPI registry (n = 1678) using impedance aggregometry. The clinical outcome cardiovascular death or stent thrombosis within 30 days after stenting was investigated in a meta-analysis of substudies of the ISAR-ASPI registry, the PLATO trial (n = 3236), and the Utrecht Coronary Biobank (n = 1003) comprising a total 5917 patients. Homozygous GUCY1A3 risk allele carriers (GG) displayed increased on-aspirin platelet reactivity compared with non-risk allele (AA/AG) carriers [150 (interquartile range 91–209) vs. 134 (85–194) AU⋅min, P 203 AU⋅min; 29.5 vs. 24.2%, P = 0.02). Homozygous risk allele carriers were also at higher risk for cardiovascular death or stent thrombosis (hazard ratio 1.70, 95% confidence interval 1.08–2.68; P = 0.02). Bleeding risk was not altered. Conclusion: We conclude that homozygous GUCY1A3 risk allele carriers are at increased risk of cardiovascular death or stent thrombosis within 30 days after coronary stenting, likely due to higher on-aspirin platelet reactivity. Whether GUCY1A3 genotype helps to tailor antiplatelet treatment remains to be investigated

    Age- and calorie-independent life span extension from dietary restriction by bacterial deprivation in Caenorhabditis elegans

    Get PDF
    Background: Dietary restriction (DR) increases life span and delays age-associated disease in many organisms. The mechanism by which DR enhances longevity is not well understood. Results: Using bacterial food deprivation as a means of DR in C. elegans, we show that transient DR confers long-term benefits including stress resistance and increased longevity. Consistent with studies in the fruit fly and in mice, we demonstrate that DR also enhances survival when initiated late in life. DR by bacterial food deprivation significantly increases life span in worms when initiated as late as 24 days of adulthood, an age at which greater than 50% of the cohort have died. These survival benefits are, at least partially, independent of food consumption, as control fed animals are no longer consuming bacterial food at this advanced age. Animals separated from the bacterial lawn by a barrier of solid agar have a life span intermediate between control fed and food restricted animals. Thus, we find that life span extension from bacterial deprivation can be partially suppressed by a diffusible component of the bacterial food source, suggesting a calorie-independent mechanism for life span extension by dietary restriction. Conclusion: Based on these findings, we propose that dietary restriction by bacterial deprivation increases longevity in C. elegans by a combination of reduced food consumption and decreased food sensing

    Oxytocin's neurochemical effects in the medial prefrontal cortex underlie recovery of task-specific brain activity in autism: a randomized controlled trial

    Get PDF
    The neuropeptide oxytocin may be an effective therapeutic strategy for the currently untreatable social and communication deficits associated with autism. Our recent paper reported that oxytocin mitigated autistic behavioral deficits through the restoration of activity in the ventromedial prefrontal cortex (vmPFC), as demonstrated with functional magnetic resonance imaging (fMRI) during a socio-communication task. However, it is unknown whether oxytocin exhibited effects at the neuronal level, which was outside of the specific task examined. In the same randomized, double-blind, placebo-controlled, within-subject cross-over clinical trial in which a single dose of intranasal oxytocin (24 IU) was administered to 40 men with high-functioning autism spectrum disorder (UMIN000002241/000004393), we measured N-acetylaspartate (NAA) levels, a marker for neuronal energy demand, in the vmPFC using (1)H-magnetic resonance spectroscopy ((1)H-MRS). The differences in the NAA levels between the oxytocin and placebo sessions were associated with oxytocin-induced fMRI signal changes in the vmPFC. The oxytocin-induced increases in the fMRI signal could be predicted by the NAA differences between the oxytocin and placebo sessions (P=0.002), an effect that remained after controlling for variability in the time between the fMRI and (1)H-MRS scans (P=0.006) and the order of administration of oxytocin and placebo (P=0.001). Furthermore, path analysis showed that the NAA differences in the vmPFC triggered increases in the task-dependent fMRI signals in the vmPFC, which consequently led to improvements in the socio-communication difficulties associated with autism. The present study suggests that the beneficial effects of oxytocin are not limited to the autistic behavior elicited by our psychological task, but may generalize to other autistic behavioral problems associated with the vmPFC

    Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress

    Get PDF
    Hsp70 is a highly conserved molecular chaperone critical for the folding of new and denatured proteins. While traditional models state that cells respond to stress by upregulating inducible HSPs, this response is relatively slow and is limited by transcriptional and translational machinery. Recent studies have identified a number of post-translational modifications (PTMs) on Hsp70 that act to fine-tune its function. We utilized mass spectrometry to determine whether yeast Hsp70 (Ssa1) is differentially modified upon heat shock. We uncovered four lysine residues on Ssa1, K86, K185, K354 and K562 that are deacetylated in response to heat shock. Mutation of these sites cause a substantial remodeling of the Hsp70 interaction network of co-chaperone partners and client proteins while preserving essential chaperone function. Acetylation/deacetylation at these residues alter expression of other heat-shock induced chaperones as well as directly influencing Hsf1 activity. Taken together our data suggest that cells may have the ability to respond to heat stress quickly though Hsp70 deacetylation, followed by a slower, more traditional transcriptional response

    Simple model systems: a challenge for Alzheimer's disease

    Get PDF
    The success of biomedical researches has led to improvement in human health and increased life expectancy. An unexpected consequence has been an increase of age-related diseases and, in particular, neurodegenerative diseases. These disorders are generally late onset and exhibit complex pathologies including memory loss, cognitive defects, movement disorders and death. Here, it is described as the use of simple animal models such as worms, fishes, flies, Ascidians and sea urchins, have facilitated the understanding of several biochemical mechanisms underlying Alzheimer's disease (AD), one of the most diffuse neurodegenerative pathologies. The discovery of specific genes and proteins associated with AD, and the development of new technologies for the production of transgenic animals, has helped researchers to overcome the lack of natural models. Moreover, simple model systems of AD have been utilized to obtain key information for evaluating potential therapeutic interventions and for testing efficacy of putative neuroprotective compounds
    corecore