122 research outputs found

    A Model Reference Adaptive Re-Entry Flight Control System

    Get PDF
    The pitch plane equations of motion of a rigid body maneuvering ballistic re-entry vehicle are reviewed. A quasi-linear analysis of these equations is made about a nominal re-entry trajectory. It is demonstrated that in a large number of cases constant gain compensation for the flight control system will not be satisfactory due primarily to variations in dynamic pressure and static margin. A brief review of the adaptive concept is presented. It is shown that a model reference adaptive feedback system which has lift acceleration as the controlled variable and pitch rate as a stabilizing feedback is capable of handling the re-entry control problem. Current research involving fast identification techniques is described

    From the vulnerable plaque to the vulnerable patient: Current concepts in atherosclerosis

    Get PDF
    Cardiovascular disease affects a significant proportion of the population with global prevalence of 6081 per 100,000 (Virani et al., 2020). Most core risk factors are well characterized and can be controlled with interventions, also meaning it is possible to identify most people at increased risk of acute events, defined as a 10 year risk of events of >20% . However, the real world occurrence of events in this at risk population is relatively low suggesting there is still much to be learnt or identified in spotting the vulnerable patient harbouring vulnerable atherosclerotic plaque at the earliest possible time.British Heart Foundatio

    Myocardin regulates vascular smooth muscle cell inflammatory activation and disease.

    Get PDF
    OBJECTIVE: Atherosclerosis, the cause of 50% of deaths in westernized societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local proinflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. APPROACH AND RESULTS: We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic apolipoprotein E(-/-) mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines, and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis, and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. CONCLUSIONS: We propose myocardin as a guardian of the contractile, noninflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease.This work was supported by Wellcome Trust funding for MAJ (Studentship 086799/Z/08/Z), British Heart Foundation grants (PG/10/007/28184) for AT, and (RG/08/009/25841) for MRB, and SS (FS/13/29/30024), the Cambridge NIHR Biomedical Research Centre and the NIH for JM (NIH HL-117907).This is the accepted manuscript of a paper published in Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, doi: 10.1161/ATVBAHA.114.30521

    Regulatory B cell-specific interleukin-10 is dispensable for atherosclerosis development in mice.

    Get PDF
    OBJECTIVE: To determine the role of regulatory B cell-derived interleukin (IL)-10 in atherosclerosis. APPROACH AND RESULTS: We created chimeric Ldlr(-/-) mice with a B cell-specific deficiency in IL-10, and confirmed that purified B cells stimulated with lipopolysaccharide failed to produce IL-10 compared with control Ldlr(-/-) chimeras. Mice lacking B-cell IL-10 demonstrated enhanced splenic B-cell numbers but no major differences in B-cell subsets, T cell or monocyte distribution, and unchanged body weights or serum cholesterol levels compared with control mice. After 8 weeks on high-fat diet, there were no differences in aortic root or aortic arch atherosclerosis. In addition to plaque size, plaque composition (macrophages, T cells, smooth muscle cells, and collagen) was similar between groups. CONCLUSIONS: In contrast to its prominent regulatory role in many immune-mediated diseases and its proposed modulatory role in atherosclerosis, B cell-derived IL-10 does not alter atherosclerosis in mice.This work was funded by the British Heart Foundation (to Z.M.). M. N. has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° 608765.This is the author accepted manuscript. The final version is available from American Heart Association at http://dx.doi.org/10.1161/ATVBAHA.115.305568

    Type-2 innate lymphoid cells control the development of atherosclerosis in mice.

    Get PDF
    Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence on the development of atherosclerosis has not been explored. Here, we show that ILC2 are present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2 and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr-/- mice accelerates the development of atherosclerosis, which is prevented by reconstitution with wild type but not Il5-/- or Il13-/- ILC2. We conclude that ILC2 represent a major innate cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be altered by high fat diet

    Towards comprehensive understanding of bacterial genetic diversity:large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis

    Get PDF
    Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis , whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis . We found 590 amplifications in M. tuberculosis , and like B. pertussis , these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis . This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis , highlighting the need for a more holistic understanding of bacterial genetics
    • …
    corecore