5,510 research outputs found
SAFE Newsletter : 2013, Q3
Research: Joachim Weber, Benjamin Loos, Steffen Meyer, Andreas Hackethal "Individual Investors' Trading Motives and Security Selling Behavior"
Ignazio Angeloni, Ester Faia "Monetary Policy and Prudential Regulations with Bank Runs"
Helmut Siekmann "Legal Limits to Quantitative Easing"
Policy Margit Vanberg "SAFE Summer Academy 2013 on 'International Financial Stability'"
Guest Commentary Peter Praet "Cooperation between the ECB and Academia
Domination parameters with number 2: Interrelations and algorithmic consequences
In this paper, we study the most basic domination invariants in graphs, in which number 2 is intrinsic part of their definitions. We classify them upon three criteria, two of which give the following previously studied invariants: the weak 2-domination number, γw2(G), the 2-domination number, γ2(G), the {2}-domination number, γ{2}(G), the double domination number, γ×2(G), the total {2}-domination number, γt{2}(G), and the total double domination number, γt×2(G), where G is a graph in which the corresponding invariant is well defined. The third criterion yields rainbow versions of the mentioned six parameters, one of which has already been well studied, and three other give new interesting parameters. Together with a special, extensively studied Roman domination, γR(G), and two classical parameters, the domination number, γ(G), and the total domination number, γt(G), we consider 13 domination invariants in graphs. In the main result of the paper we present sharp upper and lower bounds of each of the invariants in terms of every other invariant, a large majority of which are new results proven in this paper. As a consequence of the main theorem we obtain new complexity results regarding the existence of approximation algorithms for the studied invariants, matched with tight or almost tight inapproximability bounds, which hold even in the class of split graphs.Fil: Bonomo, Flavia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Brešar, Boštjan. Institute of Mathematics, Physics and Mechanics; Eslovenia. University of Maribor; EsloveniaFil: Grippo, Luciano Norberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Milanič, Martin. University of Primorska; EsloveniaFil: Safe, Martin Dario. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentin
Balancedness of subclasses of circular-arc graphs
A graph is balanced if its clique-vertex incidence matrix contains no square submatrix of odd order with exactly two ones per row and per column. There is a characterization of balanced graphs by forbidden induced subgraphs, but no characterization by mininal forbidden induced subgraphs is known, not even for the case of circular-arc graphs. A circular-arc graph is the intersection graph of a family of arcs on a circle. In this work, we characterize when a given graph G is balanced in terms of minimal forbidden induced subgraphs, by restricting the analysis to the case where G belongs to certain classes of circular-arc graphs, including Helly circular-arc graphs, claw-free circular-arc graphs, and gem-free circular-arc graphs. In the case of gem-free circular-arc graphs, analogous characterizations are derived for two superclasses of balanced graphs: clique-perfect graphs and coordinated graphs.Fil: Bonomo, Flavia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Guillermo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad de Chile; ChileFil: Safe, Martin Dario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; ArgentinaFil: Wagler, Annegret Katrin. Centre National de la Recherche Scientifique; Franci
Domination parameters with number 2: interrelations and algorithmic consequences
In this paper, we study the most basic domination invariants in graphs, in
which number 2 is intrinsic part of their definitions. We classify them upon
three criteria, two of which give the following previously studied invariants:
the weak -domination number, , the -domination number,
, the -domination number, , the double
domination number, , the total -domination number,
, and the total double domination number, , where is a graph in which a corresponding invariant is well
defined. The third criterion yields rainbow versions of the mentioned six
parameters, one of which has already been well studied, and three other give
new interesting parameters. Together with a special, extensively studied Roman
domination, , and two classical parameters, the domination number,
, and the total domination number, , we consider 13
domination invariants in graphs . In the main result of the paper we present
sharp upper and lower bounds of each of the invariants in terms of every other
invariant, large majority of which are new results proven in this paper. As a
consequence of the main theorem we obtain some complexity results for the
studied invariants, in particular regarding the existence of approximation
algorithms and inapproximability bounds.Comment: 45 pages, 4 tables, 7 figure
Quantitative Models and Implicit Complexity
We give new proofs of soundness (all representable functions on base types
lies in certain complexity classes) for Elementary Affine Logic, LFPL (a
language for polytime computation close to realistic functional programming
introduced by one of us), Light Affine Logic and Soft Affine Logic. The proofs
are based on a common semantical framework which is merely instantiated in four
different ways. The framework consists of an innovative modification of
realizability which allows us to use resource-bounded computations as realisers
as opposed to including all Turing computable functions as is usually the case
in realizability constructions. For example, all realisers in the model for
LFPL are polynomially bounded computations whence soundness holds by
construction of the model. The work then lies in being able to interpret all
the required constructs in the model. While being the first entirely semantical
proof of polytime soundness for light logi cs, our proof also provides a
notable simplification of the original already semantical proof of polytime
soundness for LFPL. A new result made possible by the semantic framework is the
addition of polymorphism and a modality to LFPL thus allowing for an internal
definition of inductive datatypes.Comment: 29 page
- …
